HPV Vaccination: Evidence from British Columbia and Globally

BC Immunization Forum 2020

Gina Ogilvie MD FCFP DrPH
Professor, University of British Columbia
Canada Research Chair, Global Control of HPV related cancer
Speaker Disclosure slide

- I do not have an affiliation (financial or otherwise) with a pharmaceutical, medical device or communications organization.
- I do not intend to make therapeutic recommendations for medications that have not received regulatory approval (i.e. “off-label” use of medication)
May 18, 2018:

- Director-General of WHO issued call for action towards elimination of cervical cancer as a public health problem.
- Called for coordinated action globally.

“High income countries have shown the way. In many of these countries, cervical cancer is becoming a thing of the past. Now is the time for global elimination”

Global Burden of Cervical cancer

Figure 1: Geographical distribution of world age-standardised incidence of cervical cancer by country, estimated for 2018
SOGC Canadian Statement

October 1, 2018

• Society of Obstetricians and Gynaecologists of Canada (SOGC) sets goal to become first country in the world to eliminate cervical cancer

• Goal for elimination to be achieved for the next generation
WHO life-course approach to cervical cancer control

Primary Prevention
- Girls 9-14 years
 - HPV vaccination
- Girls and boys, as appropriate
 - Health information and warnings about tobacco use
 - Sexuality education tailored to age & culture
 - Condom promotion/provision for those engaged in sexual activity
 - Male circumcision

Secondary Prevention
- Women > 30 years of age
 - “Screen and treat” – single visit approach
 - Point-of-care rapid HPV testing for high risk HPV types
 - Followed by immediate treatment
 - On site treatment

Tertiary Prevention
- All women as needed
 - Treatment of invasive cancer at any age and palliative care
 - Ablative surgery
 - Radiotherapy
 - Chemotherapy
 - Palliative Care

[Graph showing population prevalence of HPV infection, precancer, and cancer over time for girls and women of different ages.]

Footer logos:
- UBC
- Women’s Health Research Institute at BC Women’s
- Provincial Health Services Authority
- CIHR
- BC Cancer Agency
- Global Control of HPV Related Diseases and Cancer
Age-standardized annual incidence (A) of invasive cervical cancer and associated mortality (B)
Cervical cancer in Canada

- Median age of diagnosis is 47 years
- 73% of cervical cancer in women 25-59 years
- Immigrant women; women who do not speak English or French at home more likely to develop cervical cancer
- Incidence rate of cervical cancer rate in First Nations is significantly higher than in non First Nations women in BC: 33.1 (95%CI: 27.0-39) vs 17.2 (95%CI:16.6–17.9) [Standardized rate ratio: 1.92 (1.49–2.48)]
A lot can change in 12 years…
Primary prevention: HPV vaccines

HPV Types Included in Vaccine

<table>
<thead>
<tr>
<th>HPV Types</th>
<th>6</th>
<th>11</th>
<th>16</th>
<th>18</th>
<th>31</th>
<th>33</th>
<th>45</th>
<th>52</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bivalent</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadrivalent</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-valent</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These HPV Types Cause:
- Genital warts
- ~66% of Cervical Cancers
- ~15% of Cervical Cancers
Current BC Program

Grade 6 immunization program:
11-12 years of age
Born in 1997 or later

Grade 9 catch-up program:
14-15 years of age
Born in 1994-1996

At-risk boys program
Men who report sex with men born in 1989 or later

2008
HPV-4 school-based girls program
60-69%

2015
HPV-4 clinic-based at-risk boys program
67%

2017
Gender neutral HPV-9 program
65%

2019
≤22 yrs.

≤30 yrs.

23-25 yrs.
HPV vaccination uptake: Canada; 2015/16

FIGURE 5.3
Percentage of girls who received a full course of human papillomavirus (HPV) vaccination from school-based HPV immunization programs, by jurisdiction — most recent reported year

As of the 2015/16 school year, the full course of vaccination for school-based HPV vaccination programs is three doses in AB, SK, NT and NU, and two doses in all other provinces and territories. 2015/16: MB, ON, NS, PE, NL, NT; 2016: SK; 2016/17: BC, AB, QC, NB, YT. “—” Data not available. Data source: Provincial and territorial immunization programs.
HPV vaccine coverage: BC

http://www.bccdc.ca/health-professionals/data-reports/childhood-immunization-coverage-dashboard
How can we increase vaccine coverage?

• Reduce doses required
• Support and endorsement of practitioners

• Improve parent’s confidence in vaccine:
 – Impact on sexual health decisions
 – Effectiveness
 – Safety
Immunogenicity of HPV Vaccine – 2 or 3 Doses?

INTRODUCTION

The quadrivalent HPV VACCINE was originally approved in a 3-DOSE (3D) schedule.

A 2-DOSE (2D) schedule has been recommended based on recent immunobridging studies.

OBJECTIVE:

Compare the LONG TERM ANTIBODY LEVELS of 2D and 3D schedules of the 4vHPV vaccine.

METHODS

GIRLS
Age: 9-13
- 2 DOSES n = 35
- 3 DOSES n = 38

WOMEN
Age: 16-26
- 3 DOSES n = 30

Evaluated at 7, 24, and 120 months after first dose.

ASSAYS:
Competitive Luminex immunoassay (cLIA)
Total Immunoglobulin G (TlgG)

OUTCOMES:
Geometric Mean Titers (GMT's)
Seropositivity Rates

Immunogenicity of HPV Vaccine – 2 or 3 Doses?

RESULTS

2D & 3D GIRLS showed NONINFERIOR GMTs for all HPV Vaccine types compared to 3D women

2D GIRLS showed NONINFERIOR GMTs for HPV 6, 11, and 16 compared to 3D women

No difference in decline of ANTIBODY TITERS between schedules

2D & 3D GIRLS showed NONINFERIOR GMTs for all HPV Vaccine types compared to 3D women

cLIA SEROPOSITIVITY RATES >95% for all HPV types (except for HPV18)

HPV18 SEROPOSITIVITY RATES DECREASED over time with the most prominent effects for 3D WOMEN

Immunogenicity of HPV Vaccine – 2 or 3 Doses?

CONCLUSION

2-DOSE HPV VACCINATION SCHEDULE

- GMT’s were statistically noninferior to 3D up to 120 months after 4vHPV vaccine
- 2D schedule of 4vHPV vaccine highly immunogenic
- Antibody responses persisted up to 10 years post vaccination

IMPLICATIONS

- Findings confirm DURABILITY of immune response after 2D of HPV Vaccine for at least 10 YEARS
- 2-DOSE SCHEDULE supported in recommendation for World Health Organization
- Girls vaccinated with 4vHPV vaccine will be well protected for more than a decade

HPV Vaccination: Might one dose be enough?

Footnotes:
* Vaccination period: 0/1/6 mo

Solid lines represent HPV16/18 specific geometric means

The line for the natural infection is from enrollment only, and does not represent longitudinal samples

Dashed orange line is the laboratory determined seropositivity cutoff (HPV16 = 8 EU/mL; HPV18 = 7 EU/mL)

Safaeian et al. 2013 Canc Prev Research
Is one dose of human papillomavirus vaccine as effective as three?: A national cohort analysis

Julia ML. Brothertona,b,*, Alison Buddc, Christopher Rompotisc, Natasha Bartlettc, Michael J. Malloya,b, Rachael L. Andersend, Kim AR. Coultere, Peter W. Couveef, Nerida Steelg,h, Gail H. Wardi, Marion Savillej,k

Table 2
Rate of histologically confirmed CIN2/AIS + (due to any HPV type) and hazard ratios by number of quadrivalent human papillomavirus vaccine doses received*, national cohort of screening women born in 1992 or later, 2007–2014, Australia.

<table>
<thead>
<tr>
<th>Abnormalities</th>
<th>No. women</th>
<th>Person–time (years)</th>
<th>No. abnormalities</th>
<th>Rate per 1000 women</th>
<th>Rate per 1000 women-years</th>
<th>Hazard ratio**</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN2+/AIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>48,845</td>
<td>85,417</td>
<td>645</td>
<td>13.2</td>
<td>7.6</td>
<td>1.0</td>
</tr>
<tr>
<td>1 dose</td>
<td>8,618</td>
<td>18,104</td>
<td>89</td>
<td>10.3</td>
<td>4.9</td>
<td>0.65 (0.52–0.81)</td>
</tr>
<tr>
<td>2 doses</td>
<td>18,190</td>
<td>37,819</td>
<td>174</td>
<td>9.6</td>
<td>4.6</td>
<td>0.61 (0.52–0.72)</td>
</tr>
<tr>
<td>3 doses</td>
<td>174,995</td>
<td>334,410</td>
<td>1,496</td>
<td>85</td>
<td>4.5</td>
<td>0.59 (0.54–0.65)</td>
</tr>
</tbody>
</table>

* Vaccine dose status assigned to outcome using ‘Final status last’ method.
** From Cox proportional hazard regression, with age as the time-scale, adjusted for area of residence and socioeconomic status.
Impact of Vaccine Hesitancy: Japan

Figure 2: Vaccine coverage at age 20 years by birth cohort in five scenarios

50% uptake achieved for females aged 13–20 years in 2020, some of whom might already be infected; for these cohorts, vaccination is given to them in the year 2020 only.
Figure 3: Impact of the vaccine crisis and potential recovery scenarios from 2020 to 2095 on age-standardised cervical cancer incidence (A) and cervical cancer mortality (B).

Unless otherwise stated, we assume the bivalent or quadrivalent vaccines are used in recovery scenarios. Age-standardisation was calculated using the World Standard Population for ages 10–84 years. Shaded areas represent variation depending on assumptions of cross-protective efficacy against non-vaccine-included HPV types, with the lower range showing cross-protection (on the basis of data from the bivalent vaccine) and the higher range showing zero cross-protection.
Vaccine Hesitancy: Japan

- Women, YOB 1994-2007
- Vaccine crisis from 2013-2019
- Modeling: Assume 70% coverage
- Predict additional ~ 25,000 cases; ~ 5500 deaths
- Each year ~ 3600 cases; ~ 750 cases
"Just over 20% of parents expressed concerns about the influence of the HPV vaccine on sexual behaviour."

"Those who felt that the vaccine had limited influence on sexual behaviour were significantly more likely (AOR = 3.2 (2.2–4.6)) to intend that their daughters undergo HPV vaccination."
Methods: Study sample

- BC AHS data from 2003, 2008, 2013, stratified by grade & health service delivery area (for provincial representation), weighted and age adjusted

- Final weighted sample included adolescent girls who self-reported heterosexual, unsure, questioning or without attractions

- Lesbian & bisexual girls (less than 5% of sample) warrant a stand-alone, future analysis as there may be differences in sexual decision-making with unclear comparability
Methods: Analysis

- Prevalence of self-reported sexual behaviors
- Test linear trends of sexual behaviors, contraception use, & pregnancy involvement across years using adjusted odd ratio

<table>
<thead>
<tr>
<th>Question</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have you ever had sexual intercourse?</td>
<td>Red</td>
</tr>
<tr>
<td>How old were you when you had sexual intercourse for the first time?</td>
<td>Blue</td>
</tr>
<tr>
<td>During your life, with how many different partners have you had sexual intercourse?</td>
<td>Grey</td>
</tr>
<tr>
<td>Did you drink alcohol or use drugs before you had sexual intercourse the last time?</td>
<td>Red</td>
</tr>
<tr>
<td>The last time you had sexual intercourse, did you or your partner use a condom or other latex barrier?</td>
<td>Blue</td>
</tr>
<tr>
<td>The last time you had sexual intercourse, what method(s) did you or your partner use to prevent pregnancy? (Mark all that apply)</td>
<td>Grey</td>
</tr>
<tr>
<td>How many times have you been pregnant or gotten someone pregnant?</td>
<td>Grey</td>
</tr>
</tbody>
</table>
RISKY SEX BEFORE AND AFTER THE HPV VACCINE

A VISUAL RESEARCH ABSTRACT

STUDY POPULATION

OBJECTIVE
Determine whether receiving the HPV vaccination is associated with increased sexual risk-taking at the population level.

AGE-ADJUSTED ODDS OF SEXUAL BEHAVIOURS AND OUTCOMES BETWEEN 2003 AND 2013

Less likely after vaccine:

- **0.79** Sexual intercourse
- **0.82** Intercourse before age 14 years
- **0.69** Substance use before intercourse
- **0.56** Pregnancy

More likely after vaccine:

- **1.19** Condom use
- **1.43** Use of birth control pills

No change after vaccine:

- **1.02** Three or more partners in past year

These findings suggest no association between HPV vaccination and more risky sexual behaviours.

©2018 Joule Inc. or its licensors
Effect of human papillomavirus (HPV) vaccination on clinical indicators of sexual behaviour among adolescent girls: the Ontario Grade 8 HPV Vaccine Cohort Study

Leah M. Smith MSc, Jay S. Kaufman PhD, Erin C. Strumpf PhD, Linda E. Lèvesque PhD
Effect of human papillomavirus (HPV) vaccination on clinical indicators of sexual behaviour among adolescent girls: the Ontario Grade 8 HPV Vaccine Cohort Study

- Administrative data analysis of grade 8 girls 2 years before (2005/06, 2006/07) and after (2007/08, 2008/09) HPV vaccine program implementation
- Indicators on sexual behaviour in grades 10-12 included pregnancy & STIs
- Regression discontinuity to estimate RD and RR attributable to vaccination and to program eligibility

Smith et al, 2015
Effect of human papillomavirus (HPV) vaccination on clinical indicators of sexual behaviour among adolescent girls: the Ontario Grade 8 HPV Vaccine Cohort Study

- \(N = 260,493 \), 15,441 (5.9%) cases of pregnancy or STI (outcome variable), no increased risk with vaccination or program eligibility
- Vaccination: \(RD = 0.61 \) per 1000 girls (95% CI: 10.71 - 9.49), \(RR = 0.96 \) (95% CI: 0.81 - 1.14)
- Program eligibility: \(RD = 0.25 \) per 1000 girls (95% CI: 4.35 - 3.85), \(RR = 0.99 \) (95% CI 0.93 - 1.06)

Smith et al, 2015
• Discontinuation and serious adverse effects were rare (0.1% and <0.1%). 7 deaths during the studies were found to be unrelated to vaccination.

• Most common adverse effects were headache, pyrexia, and injection-site related (pain, swelling, erythema) (≥5%)

• HPV9 was found to be similar to HPV4 in safety.
• Register-based Safety Studies in Denmark N=1.6M
• & Sweden N=997,585
• No evidence between HPV4 and autoimmune disorders, neurological conditions, MS or CNS demyelinating diseases
• 13 years of data
• Initial reporting (2 years) disproportionate VTE reporting, no association in subsequent evaluation
“The safety of these vaccines has been reviewed by multiple medical authorities and regulatory agencies globally... All have endorsed them as safe and effective. Importantly, there is no evidence for neurological or autoimmune diseases caused by the HPV vaccines. To date, there have been no deaths directly attributed to HPV vaccination.”

“IPVS strongly endorses HPV vaccination of all girls and women per the indications specified by the relevant national regulatory authorities and vaccination of boys and men wherever already approved.”
Disease surveillance HPV-related diseases
Endpoints we have information on a decade after introduction:

- Genital warts ✓
- Juvenile-onset recurrent papillomatosis ✓
- HPV Prevalence ✓
- Incident and persistent HPV infections ✓
- CIN ✓
- Cancer ✓
Impact of the Human Papillomavirus Immunization Program on Rates of Anogenital Warts in British Columbia, Canada 2000 - 2017

Christine Lukac, Robine Donken, Michael Otterstatter, Olga Mazo, Stanley Wong, Fawziah Marra, Laurie Smith, Monika Naus, Deborah Money, Mel Krajden, Troy Grennan, Mark Gilbert, Jason Wong, Gina Ogilvie

Background

- HPV-4 vaccine prevents anogenital warts

Results

- 85,158 individuals accessed STI services 2000-2017

Adjusted rates of warts by birth cohort

Objectives & Hypotheses

- To measure of impact of HPV-4 vaccine program on warts

Conclusion

- HPV-4 vaccine program achieved its intended impact.
Ecological impact: Pre-/post vaccination rates

- Eligible for vaccination

<table>
<thead>
<tr>
<th>Age Group</th>
<th>CIN2 Rate** (95%CI)</th>
<th>Rate Ratio * (95%CI)</th>
<th>CIN 3 Rate** (95%CI)</th>
<th>Rate Ratio * (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-23 years</td>
<td>Pre</td>
<td>6.04 (5.76-6.44)</td>
<td>Ref</td>
<td>4.43 (4.15-4.71)</td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>2.71 (2.15-3.42)</td>
<td>0.89 (0.86-0.93)</td>
<td>1.69 (1.33-2.14)</td>
</tr>
</tbody>
</table>

- Ineligible for vaccination

<table>
<thead>
<tr>
<th>Age Group</th>
<th>CIN2 Rate (95%CI)</th>
<th>Rate Ratio * (95%CI)</th>
<th>CIN 3 Rate (95%CI)</th>
<th>Rate Ratio * (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-28 years</td>
<td>Pre</td>
<td>5.67 (5.05-6.36)</td>
<td>Ref</td>
<td>8.54 (8.00-9.12)</td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>6.70 (6.26-7.18)</td>
<td>1.04 (0.99-1.09)</td>
<td>9.29 (8.93-9.66)</td>
</tr>
</tbody>
</table>
Randomized controlled trials have demonstrated that HPV vaccines are highly efficacious for the prevention of HPV infections and pre-cancerous lesions.

The vaccine administered provides protection against HPV 6, 11, 16 and 18.

In 2008 British Columbia implemented a school-based HPV immunization program.

Since 1960 cervical cancer screening has been coordinated by the BC Cancer Cervix Screening Program.

HPV vaccination status for all girls in BC is recorded in two provincial electronic immunization registries.

Females born in 1994 through 2005 vs.

Cytological (high-grade squamous intraepithelial lesion (HSIL)) and histological (CIN of any degree) outcomes in a screening cohort were compared between those who were vaccinated against HPV and those.
Data linkage: Methods

- **Unvaccinated:** No doses of HPV vaccine in immunization record, or vaccine recorded after or 6 months prior to CIN/HSIL diagnosis, for all women born in 1994 – 2005.

- **At least one dose, 9-14 years old:** Women who received at least one dose of HPVV between 9 – 14 years of age (includes women who received incomplete or complete doses based on vaccine schedule).
 - **Complete on-schedule doses, 9 – 14 years old:** Full course of doses (either 2 or 3 doses based on birth cohort), on-schedule, with first dose between 9 -14 years of age.
 - **Incomplete doses 9 - 14 years of age:** At least one dose received, but less than full course, or was off-schedule, based on birth cohort.

- **Complete on-schedule doses, 15 years or older:** 3 doses, on-schedule, with first dose at 15 years of age or older.
METHODS

Understanding the real-world HPV Vaccine Impact
METHODS
Understanding the real-world HPV Vaccine Impact

- Received HPV vaccine in registry (Panorama & PARIS): birth years 1994 to 2005
 - n = 192,659

- Cervical Cancer screening registry: birth years 1994 to 2005
 - n = 38,367

- Linked

- Excluded (n=63)
 - Screening/pathology < 13 years of age (37)
 - Pathology results with no linked screening results (26)

- Combined data of women with screening history: Born in 1994 through 2005
 - n = 38,304

- At least one dose HPV vaccine
 - n = 24,191

- Unvaccinated
 - n = 14,113
Results: Incidence Rates

Table 2. Incidence Rates Adjusted for Person Time at Risk and Stratified by Dosage and Age at First Vaccine

<table>
<thead>
<tr>
<th>Vaccine Status (n)</th>
<th>HSIL, IR (95% CI)</th>
<th>No. of HSIL</th>
<th>CIN 2, IR (95% CI)</th>
<th>No. of CIN2</th>
<th>CIN 3, IR (95% CI)</th>
<th>No. of CIN3</th>
<th>CIN 2+, IR (95% CI)</th>
<th>No. of CIN 2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unvaccinated (14 130)</td>
<td>2.96 (2.60–3.36)</td>
<td>229</td>
<td>0.57 (0.44–0.73)</td>
<td>55</td>
<td>0.62 (0.48–0.79)</td>
<td>60</td>
<td>1.20 (1.00–1.42)</td>
<td>115</td>
</tr>
<tr>
<td>At least 1 dose of vaccine 9–14 y (20 738)</td>
<td>1.61 (1.40–1.84)</td>
<td>191</td>
<td>0.35 (0.27–0.45)</td>
<td>51</td>
<td>0.17 (0.12–0.24)</td>
<td>25</td>
<td>0.52 (0.42–0.64)</td>
<td>76</td>
</tr>
<tr>
<td>Incomplete series or off schedule 9–14 y (1763)</td>
<td>1.88 (1.22–2.79)</td>
<td>20</td>
<td>0.46 (0.22–0.90)</td>
<td>6</td>
<td>0.23 (0.08–0.56)</td>
<td><5<sup>a</sup></td>
<td>0.69 (0.37–1.22)</td>
<td>9</td>
</tr>
<tr>
<td>Complete series on schedule 9–14 y (18 975)</td>
<td>1.58 (1.36–1.83)</td>
<td>171</td>
<td>0.34 (0.26–0.44)</td>
<td>45</td>
<td>0.16 (0.11–0.24)</td>
<td>22</td>
<td>0.50 (0.40–0.63)</td>
<td>67</td>
</tr>
<tr>
<td>At least 1 dose of vaccine 15 y and older (3436)</td>
<td>2.62 (2.04–3.33)</td>
<td>68</td>
<td>0.54 (0.29–0.91)</td>
<td>14</td>
<td>0.46 (0.24–0.81)</td>
<td>12</td>
<td>1.00 (0.66–1.47)</td>
<td>26</td>
</tr>
<tr>
<td>Incomplete series or off schedule 15 y and older (1439)</td>
<td>3.32 (2.32–4.59)</td>
<td>36</td>
<td>0.55 (0.20–1.20)</td>
<td>6</td>
<td>0.64 (0.26–1.33)</td>
<td>7</td>
<td>1.20 (0.64–2.05)</td>
<td>13</td>
</tr>
<tr>
<td>Complete series, on schedule 15 y and older (1997)</td>
<td>2.59 (1.84–3.57)</td>
<td>32</td>
<td>0.53 (0.27–0.96)</td>
<td>8</td>
<td>0.33 (0.15–0.68)</td>
<td>5</td>
<td>0.87 (0.51–1.40)</td>
<td>13</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; CIN, cervical intraepithelial neoplasia; HSIL, high-grade squamous intraepithelial lesion; IR, incidence rate per 1000 person-years.

^a Suppressed due to small numbers.
Results: IRs

Figure 1: Incidence rates per 1000 women per year (p1000py) and 95% CI for unvaccinated vs. at least 1 dose administered between 9 – 14 yrs. HSIL, CIN 2, CIN 3, and CIN 2+ shown separately.
Results: RR Estimates

<table>
<thead>
<tr>
<th></th>
<th>HSIL</th>
<th>CIN2+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RR* (95% CI)</td>
<td>P-value</td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>ref</td>
<td></td>
</tr>
<tr>
<td>Incomplete doses, 9 – 14 yrs</td>
<td>0.61 (0.37 – 0.94)</td>
<td>0.03</td>
</tr>
<tr>
<td>Complete doses, 9 – 14 yrs</td>
<td>0.53 (0.43 – 0.64)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

*Adjusted for birth year and age at first screening test less 3 years

- There was **no significant difference** in the RR of CIN2, CIN3, or CIN2+, in **young women with incomplete HPV vaccine series administered 9 – 14 yrs of age** compared to unvaccinated women.
FINDINGS
Understanding the real-world HPV Vaccine Impact

Vaccine effectiveness

9-14 years old

On schedule complete series:

57.9%

At least one dose: 56.6%

Females who received complete series and on-schedule vaccination between the ages of 9-14 had a RR=0.42 for CIN2+ compared to unvaccinated females.

Increased CIN2+, RR 1.56 (95% CI 0.82-2.74) was found in females who received complete on schedule HPV series beginning at 15 years or older, compared to females starting at 9-14 years of age.

However, HPV vaccination at 15 years or older is still more effective than not vaccinating.

Females vaccinated against HPV have a lower incidence of cervical dysplasia compared to unvaccinated females.

Immunization between 9 - 14 years of age should be encouraged.

Continued program evaluation is important for measuring long term population impact.
Figure 5: Changes in CIN2+ among screened girls and women between the pre-vaccination and post-vaccination periods. CIN2+ = cervical intraepithelial neoplasia grade 2+. *p values are associated with the χ² statistic.
Figure 6: Changes in CIN2+ among screened girls and women during the first 7 years after the introduction of girls-only human papillomavirus vaccination, in countries with multi-cohort vaccination and high vaccination coverage.
Cancer

- Population-based cancer registry follow-up Finland
- Vaccinated at 14-19 years (RCT)

Table 1. Numbers (n) and incidence rates (/100,000 woman-years) of human papillomavirus (HPV) associated invasive cancers in cluster-randomized cohorts of altogether 9,529 14- to 17-year-old female HPV16/18 or HPV6/11/16/18 vaccine recipients and 17,838 non-HPV vaccinated, originally 14- to 19-year-old women.

<table>
<thead>
<tr>
<th>Malignancy</th>
<th>HPV vaccinated women</th>
<th>Non-HPV vaccinated women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Person years</td>
<td>n</td>
</tr>
<tr>
<td>Cervix cancer</td>
<td>65,656</td>
<td>0</td>
</tr>
<tr>
<td>Vulva cancer</td>
<td>65,656</td>
<td>0</td>
</tr>
<tr>
<td>Oropharyngeal cancer</td>
<td>65,656</td>
<td>0</td>
</tr>
<tr>
<td>Other HPV cancers³</td>
<td>65,656</td>
<td>0</td>
</tr>
<tr>
<td>All HPV associated invasive cancers</td>
<td>65,656</td>
<td>0</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>65,656</td>
<td>2</td>
</tr>
<tr>
<td>Thyroid cancer</td>
<td>65,656</td>
<td>1</td>
</tr>
<tr>
<td>Melanoma</td>
<td>65,656</td>
<td>3</td>
</tr>
<tr>
<td>Non-melanoma skin cancer</td>
<td>65,656</td>
<td>2</td>
</tr>
</tbody>
</table>

³Vaginal carcinoma, anal carcinoma.
For corresponding sub-cohorts age-aligned, 7-year periods of passive follow-up were by the population-based Finnish Cancer Registry.

Luostarinen et al. IJC 2018
Juvenile-Onset Recurrent Papillomatosis (4HPV)

Figure 1. Incident cases of juvenile onset recurrent respiratory papillomatosis notified in Australia per year 2012–2016. *Frequency and rates per 100,000 children aged 0–14 years. Notes: Difference between rate in 2012 and 2016 \(P = 0.036 \). *Surveillance commenced in October 2011 but no cases were reported in 2011.

Novakovic et al. *JID* 2017
Opportunities to increase HPV vaccine uptake

• BC led the way in program delivery
• Social media engagement with messaging
• Innovations in vaccine offering during school based programs
• Parental engagement by public health nurses
• Better understanding of ongoing concerns for parents
Not responding

Providing the facts about the topic or uncovering the rhetorical techniques typical for denialism
Elimination of cervical cancer

• Excellent HPV vaccine uptake is essential
• Opportunity in BC to increase coverage
• Support by public health professionals is key to high uptake and parental confidence
• Important role for providers