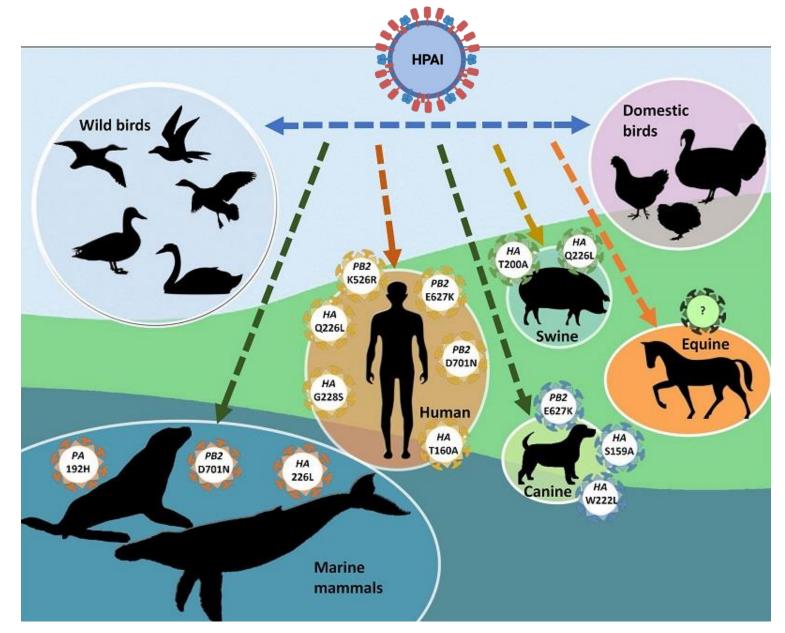
Sniffing out danger:

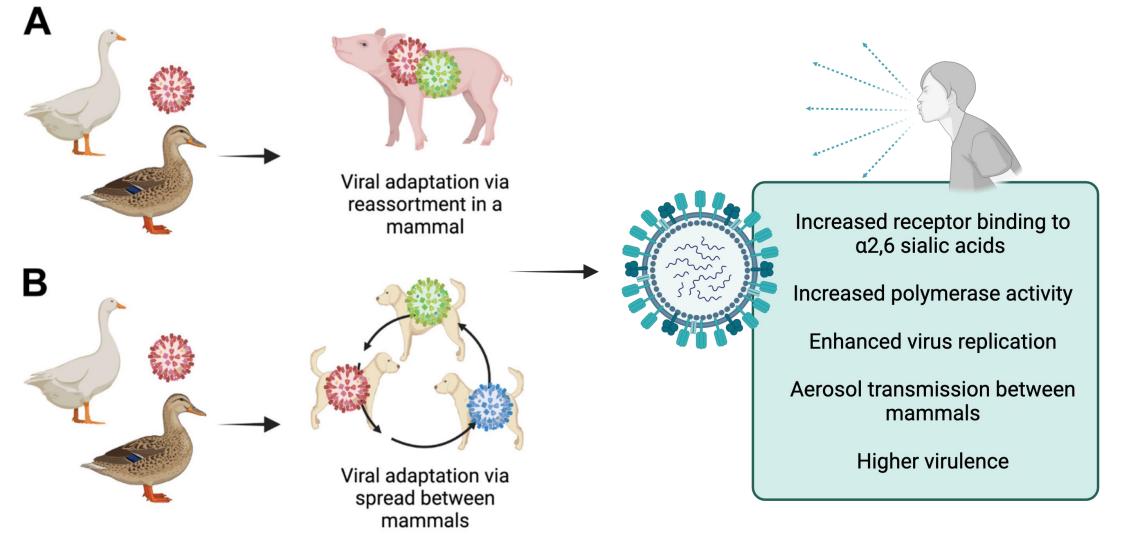
Exploring the spillover potential of highly pathogenic avian influenza virus (H5N1) using genomics in BC's wild skunks

Dr. Shannon Russell, PhD

Senior Scientist and Clinical Assistant Professor BC Centre for Disease Control Public Health Laboratory University of British Columbia



BC Centre for Disease Control Provincial Health Services Authority



Highly pathogenic avian influenza spillover into mammals

Lloren, K. et al., *Int. J. Mol. Sci.* **2017**, *18*, 2706.

Highly pathogenic avian influenza spillover into mammals occurs by **adaptation**

Adapted from Barbachano-Guerrero A et al. Elife. 2023 Apr 11;12:e86051.

Numerous isolated spillover events in mammals have been identified globally, increasing concern over H5N1's "pandemic potential"

DISPATCHES **Rapid communication** Copen Access Highly pathogenic avian influenza A(H5N1) virus infection l ike in farmed minks, Spain, October 2022 | F (R) Check for updates Download Montserrat Agüero^{1,*}, Isabella Monne^{2,*} (b), Azucena Sánchez¹, Bianca Zecchin² (b), Alice Fusaro² (b) María José Ruano¹, Manuel del Valle Arrojo³, Ricardo Fernández-Antonio⁴ (b), Antonio Manuel Souto⁵, Pedro Tordable⁵, Julio Cañás⁵, Francesco Bonfante², Edoardo Giussani², Calogero Terregino², Jesús Javier Orejas⁶ in ĭ 3 | Open Peer Review | Virology | Research Article | 23 January 2023 Y Highly Pathogenic Avian Influenza H5N1 Virus Infections in Wild Red Foxes (*Vulpes vulpes*) Show Neurotropism and Adaptive Virus Mutations Authors: Luca Bordes 🧐, Sandra Vreman, Rene Heutink, Marit Roose, Sandra Venema, Sylvia B. E. Pritz-Verschuren, Jolianne M. Rijks, José L. Conzales 🧶 Evelien A. Germeraad, Marc Engelsma, Nancy Beerens 🛑 🎽 📋 AUTHORS INFO & AFFILIATIONS Peru confirms H5N1 avian flu in marine Affiliations + expand mammals, part of southward spread Free article Influenza infections Lisa Schnirring, February 7, 2023 Topics: Avian Influenza (Bird Flu) Research Letter

Highly Pathogenic Avian Influenza A(H5N1) Virus in a Harbor Porpoise, Sweden

Elina Thorsson, Siamak Zohari, Anna Roos, Fereshteh Banihashem, Caroline Bröjer, and Aleksija Neimanis Author affiliations: National Veterinary Institute (SVA), Uppsala, Sweden (E. Thorsson, S. Zohari, F. Banihashem, C. Bröjer, A. Neimanis); Swedish Museum of Natural History, Stockholm, Sweden (A. Roos)

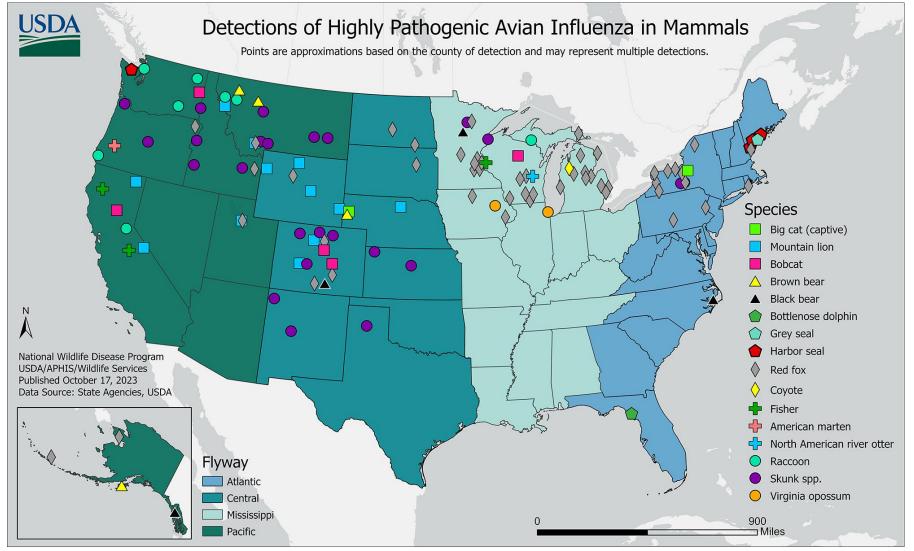
Highly Pathogenic Avian Influenza A(H5N1) Virus Outbreak in New England Seals, United States

Wendy Puryear¹, Kaitlin Sawatzki¹, Nichola Hill, Alexa Foss, Jonathon J. Stone, Lynda Doughty, Dominique Walk, Katie Gilbert, Maureen Murray, Elena Cox, Priya Patel, Zak Mertz, Stephanie Ellis, Jennifer Taylor, Deborah Fauquier, Ainsley Smith, Robert A. DiGiovanni Jr., Adriana van de Guchte, Ana Silvia Gonzalez-Reiche, Zain Khalil, Harm van Bakel, Mia K. Torchetti, Kristina Lantz, Julianna B. Lenoch, Jonathan Runstadler

> Infect Genet Evol. 2023 Jul;111:105423. doi: 10.1016/j.meegid.2023.105423. Epub 2023 Mar 6.

Highly pathogenic avian influenza A (H5N1) virus infections in wild carnivores connected to mass mortalities of pheasants in Finland

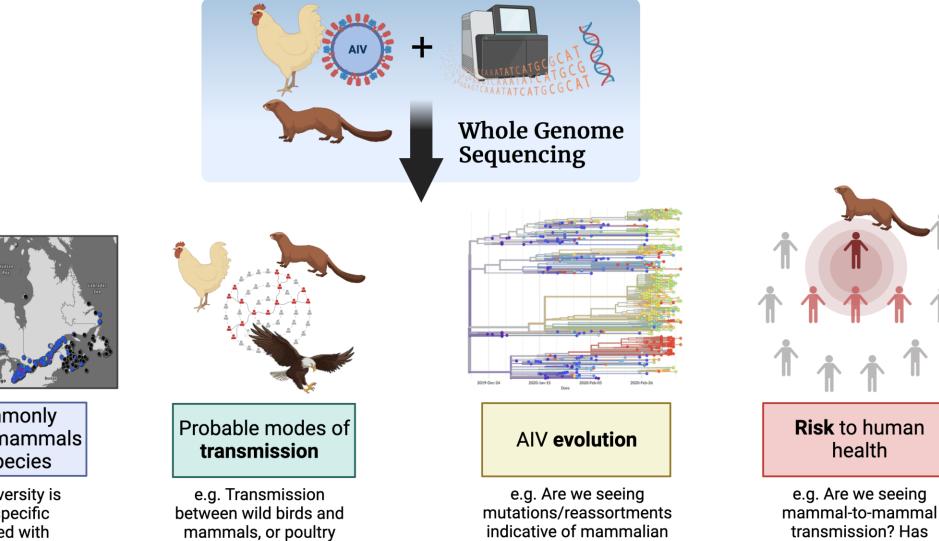
Niina Tammiranta ¹, Marja Isomursu ², Alice Fusaro ³, Minna Nylund ², Tiina Nokireki ⁴, Edoardo Giussani ³, Bianca Zecchin ³, Calogero Terregino ³, Tuija Gadd ⁴


Affiliations + expand PMID: 36889484 DOI: 10.1016/j.meegid.2023.105423

Characterization of neurotropic HPAI H5N1 viruses with novel genome constellations and mammalian adaptive mutations in free-living mesocarnivores in Canada

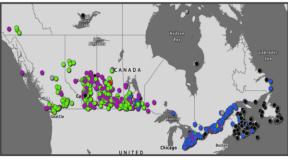
Tamiru N. Alkie, Sherri Cox, Carissa Embury-Hyatt, Brian Stevens, Neil Pople, Margo J. Pybus, ...show all Article: 2186608 | Received 04 Oct 2022, Accepted 26 Feb 2023, Accepted author version posted online: 07 Mar 2023, Published online: 15 Mar 2023

ci sion posted o


USDA: Diverse number of mammal species affected by the HPAI H5N1 (clade 2.3.4.4b) outbreak

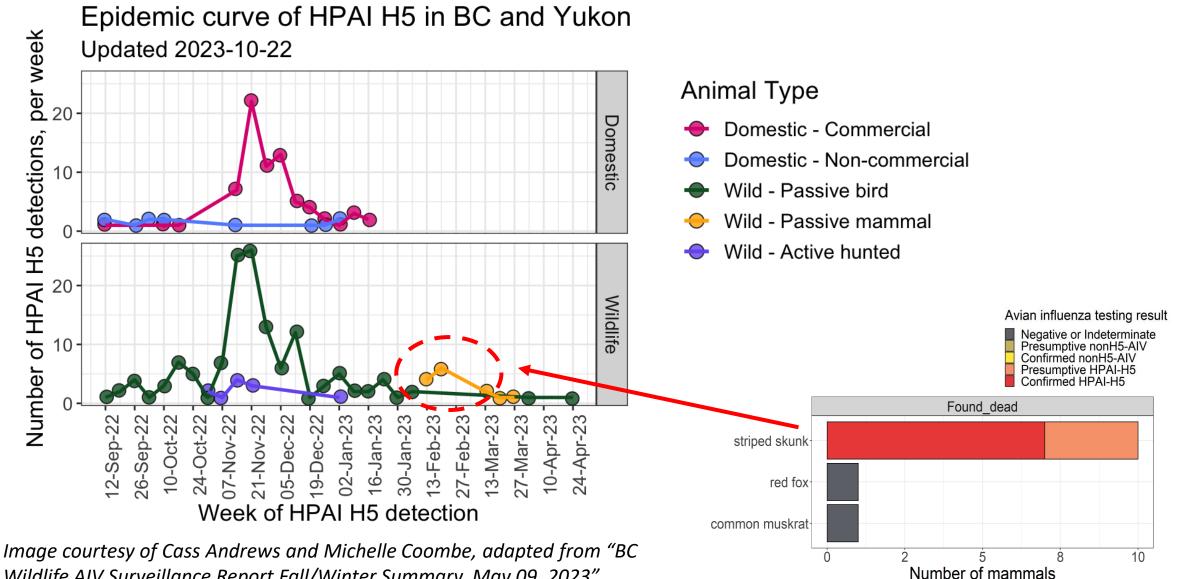
https://www.aphis.usda.gov/

How can **genomic** surveillance help us understand the HPAI spillover into mammals?


Sequencing the genomes of HPAI in mammals and birds provides *molecular evidence* that informs animal and human health risks

adaptation?

spillover risk increased?


and mammals

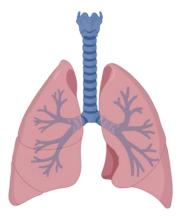
Strains commonly circulating in mammals vs. avian species

i.e. How much diversity is out there? Are specific strains correlated with increased mortality?

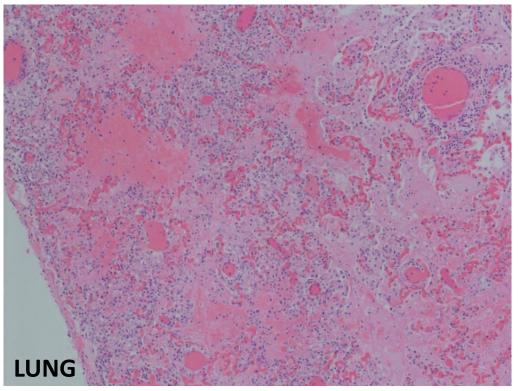
What about H5N1 in BC mammals?

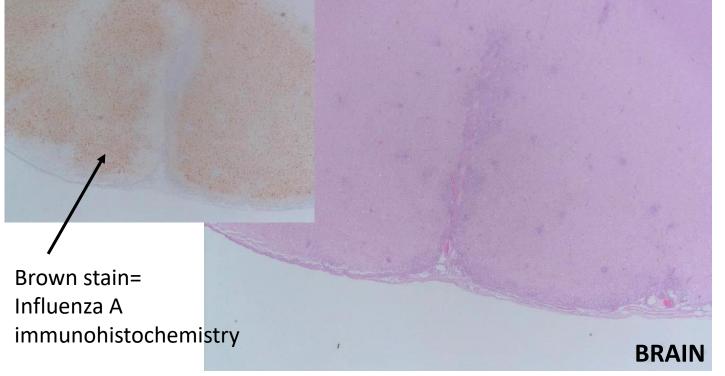
Wildlife AIV Surveillance Report Fall/Winter Summary, May 09, 2023"

Between Feb and April 2023, 14 skunks tested positive for H5N1 in BC

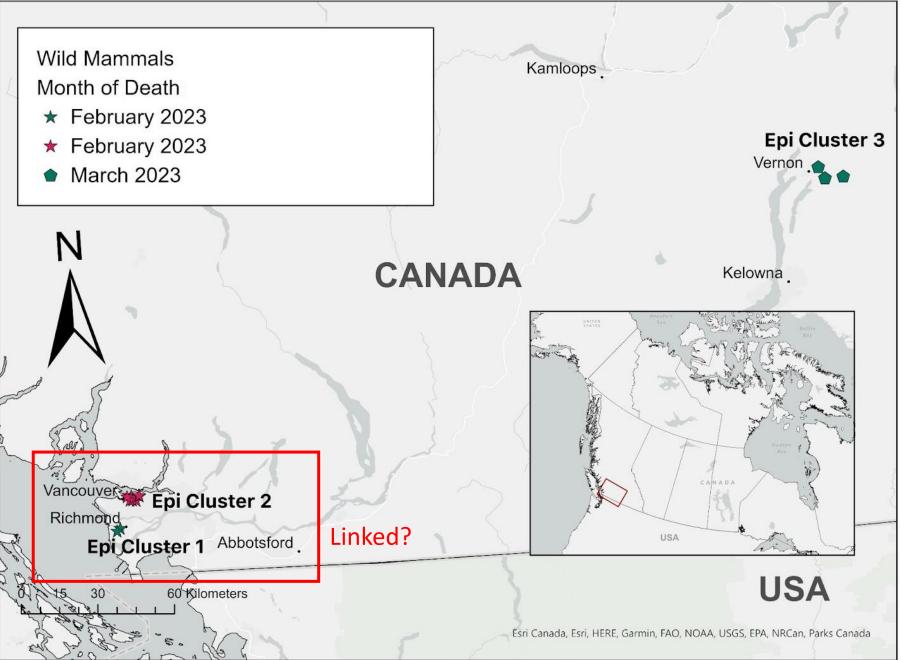

- "Wave 1" (April 2022-Sept 2022):
 - Red foxes: 4 positive for H5N1
 - Striped Skunks: 2 positive for H5N1
 - 2 successfully sequenced
- "Wave 2" (Sept 2022-June 2023)
 - Striped skunks: 14 positive for H5N1
 - 12 successfully sequenced
- Post mortem revealed skunks suffered severe pneumonia and meningoencephalitis

Note: Specimens from mammals obtained via submissions from wildlife partners (usually Ministry of Forests) from animals that are found sick or dead by the public, or were sent to wildlife rehab

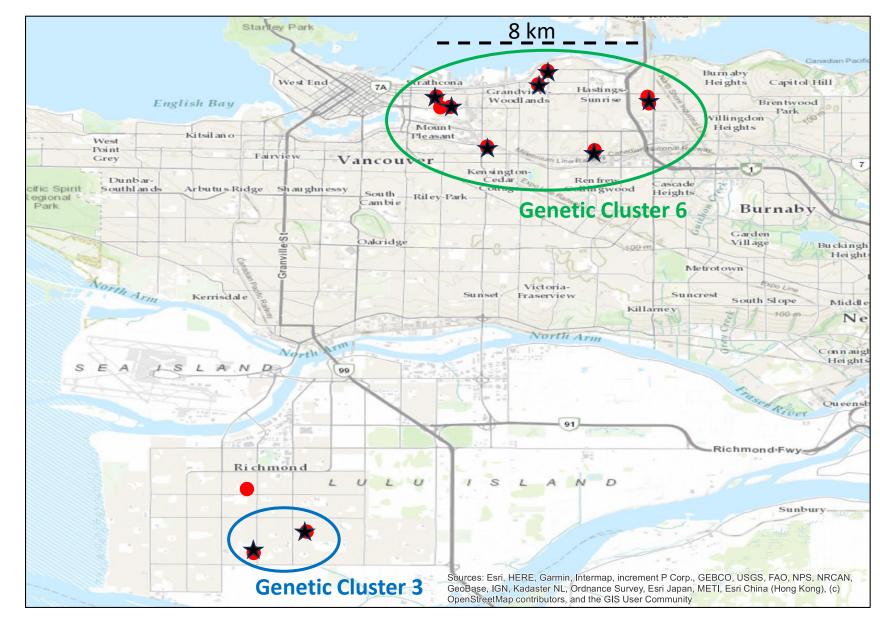



Unsplash.com

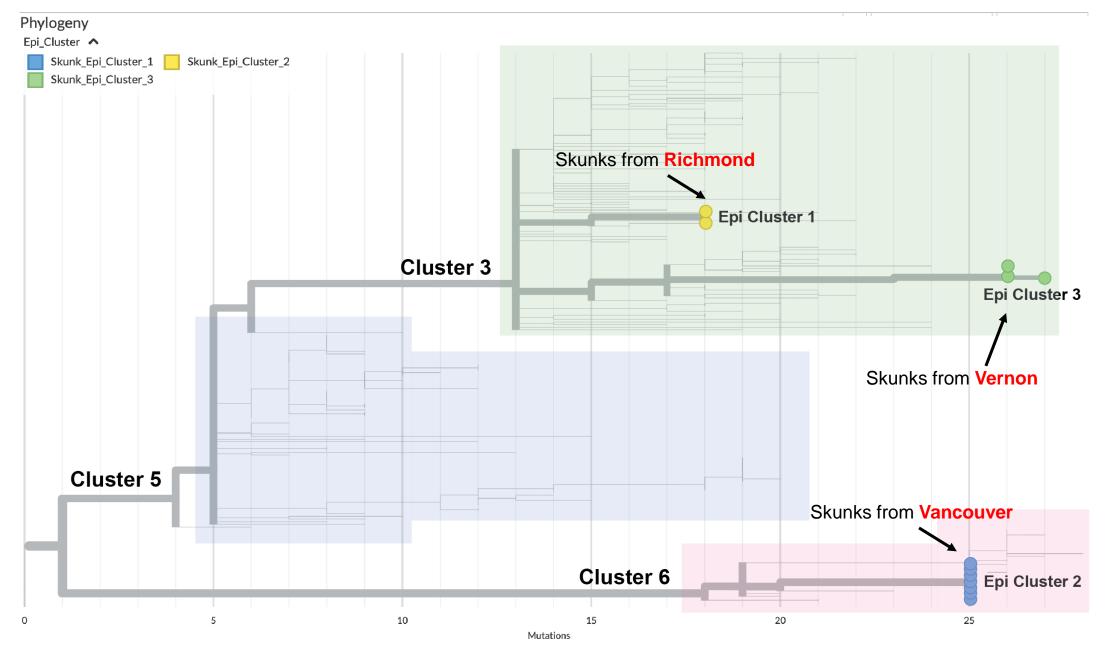
Striking pathology observed in the infected skunks

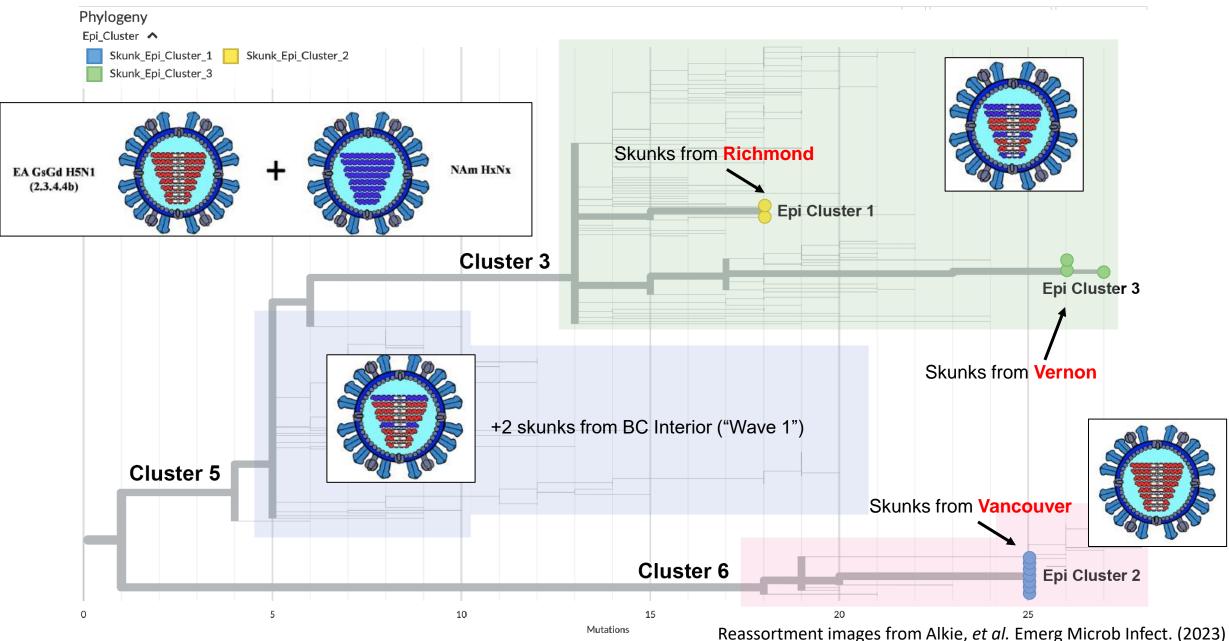


- Multifocal necrotizing interstitial pneumonia
- Severe pathology in the adrenal glands, liver
- Strong Influenza A immunoreactivity in necrotic areas
- Extremely severe meningoencephalitis
 with frequent neuronal necrosis
- High viral load in the brain compared to the lung
- Strong Influenza A immunoreactivity in the neurons of the cerebral cortex



Skunks grouped into 3 distinct "epi clusters"


BC Lower Mainland Skunks: 17 animals found sick or dead Feb '23


- 17 animals retrieved within 10 days
- 10/10 tested positive for HPAI
- 9/10 sequenced successfully
- Vancouver skunks separated by <8km
- Distinct viruses identified in Richmond vs. Vancouver animals

Animals with GIS coordinates
 Animals with sequence data

Wild skunk HPAI viruses differ based on genetics, geography and time

Wild skunk HPAI viruses represent different genome constellations

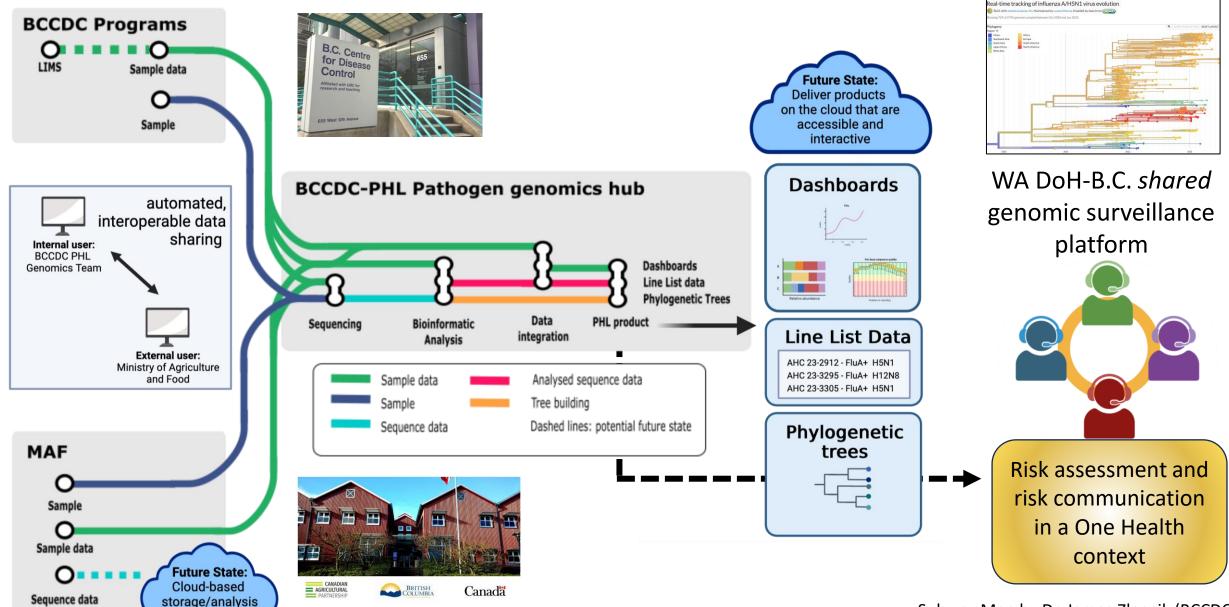
Monitoring H5N1 sequences for **mammalian adaptations**

- The majority of key mutations are found in <u>both</u> BC avian and skunk samples, or neither
- There are a few differences that should be monitored:
 - PB2- D701N
 - PB2- E627K
 - HA- T188I (new avian cluster)
 - HA- V210A
 - NP- N319K
- There could also be novel mutations not yet defined
- Monitor mammal clusters, look for evidence of onward transmission

http://www.bccdc.ca/resource-

gallery/Documents/Statistics%20and%20Research/Statistics%20and%20Reports/Epid/Influenza%20and%20Respira tory/ERV/HPAI_H5N1_Risk_Assessment_19_May_2022.pdf **Table 1.** Frequency of mammalian adaptive mutations in HPAI H5N1 sequences fromwild/domestic avian species and skunks during the outbreak in B.C./Yukon (adapted from theHPAI H5N1 Risk Assessment, May 2022, by Skowronski, D et al.)

Gene	Mutation (H5 Numbering)	Presence in B.C./Yukon avian sequences* (N≤374, between 2022-2023)	Presence in B.C. skunks* (N≤12, 2023 ^f)
PB2	T271A	0%	0%
	K526R	0%	0%
	E627K/E627A	0%	11% / 33%
	D701N	0%	56%
	S714R	0%	0%
PB1	D3V	100%	100%
	N105S	0%	0%
	D622G	100%	100%
РА	S37A	100%	100%
	V63I	0%	0%
	K356R	1.5%	0%
	N383D	99%	100%
	N409S	99%	100%
	D94S	100%	100%
	S133A	100%	100%
	S154N	100%	100%
	S155D	100%	100%
	T156A	100%	100%
	N182K	0%	0%
	T188I	4%	0%
	K189N	100%	100%
	V210A	92%	42%
	K218Q	100%	100%
	Q222L	0%	0%
	S223R	100%	100%
	G224S	0%	0%
NP	N319K	6%	58%
	E434K	0%	0%
М	I43M	100%	100%
	T215A	100%	100%
NS	80-84DEL	0%	0%
	D92E	0%	0%
	I106M	100%	100%
	C138F	100%	100%
	N30D	100%	100%


*bold text highlight mutations that are present in ≥99% of contemporary B.C./Yukon avian and skunk sequences; red font highlight mutation frequencies that differ between avian and skunk sequences. Number of sequences analyzed per segment differs due to differences in segment coverage. ^Mutations in neuraminidase were not included.

How can we use these data to better inform human/animal health risks in real-time?

Break down barriers that hinder data sharing between animal and human health sectors.

BC One Health Strategic Plan and Genomics Program

Subway Map by Dr. James Zlosnik (BCCDC)

Acknowledgements

So many important contributors to this work!

Animal Health Centre:

Chelsea Himsworth Michelle Coombe Cassandra Andrews (UBC) Ciara O'Higgins **Christine Millar** Matthew Ford Glenna McGreggor **Tony Redford** Vicki Bowes AHC Lab Technicians Tomy Joseph Theresa Burns Gigi Lin Selina Chi

Yukon **Collaborators:**

Jane Harms Maud Henaff

BC Center for Disease Control PHL:

Natalie Prystajecky Shannon Russell Agatha Jassem James Zlosnik Kevin Kuchinski Dan Fornika Erin Fraser John Tyson Jessica Caleta Kevin Yang Tracy Lee Chris Fjell Yin Chang Frankie Tsang **Branco** Cheung Michael Chan Rob Azana Samantha Kaweski Suzana Montoya VI and ABAM Labs

Other Collaborators:

Caeley Thacker Laurie Wilson Maeve Winchester Megan Willie **Yohannes Berhane** Megan Ross Jolene Giacinti Catherine Soos

Agencies providing support:

Animal Health Centre BC Center for Disease Control Canadian Wildlife Services Canadian Food Inspection Agency Investment Agriculture Foundation of BC CANADIEN DE

BC Poultry Association Ministry of Forests

TOLAN WILDLIFE SF

BC Centre for Disease Control

Canadian Food Inspection Agency