Prevention of pneumococcal disease in Canadian adults – Old and New

Allison McGeer, MSc, MD, FRCPC
Mount Sinai Hospital
University of Toronto
Objectives

- Review epidemiology of pneumococcal disease in adults
- Discuss impact of current vaccination programs on the incidence of adult disease
- Ask what the benefit of new vaccines might be
Annual rates of pneumococcal infection, Adults, developed world

<table>
<thead>
<tr>
<th>Disease</th>
<th>Annual Rate</th>
<th>Case fatality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia</td>
<td>15 per 10,000</td>
<td>5%</td>
</tr>
<tr>
<td>Bacteremia</td>
<td>1.5 per 10,000</td>
<td>15%</td>
</tr>
<tr>
<td>Meningitis</td>
<td>0.2 per 10,000</td>
<td>25%</td>
</tr>
</tbody>
</table>
Most common causes of death, Canada, 1995

<table>
<thead>
<tr>
<th>Cause of death</th>
<th>Number of deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td>56,000</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>19,900</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>5,300</td>
</tr>
<tr>
<td>Heart disease</td>
<td>43,000</td>
</tr>
<tr>
<td>Infections</td>
<td>20,000</td>
</tr>
<tr>
<td>Influenza</td>
<td>4500</td>
</tr>
<tr>
<td>S. aureus</td>
<td>1500</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td>1500</td>
</tr>
</tbody>
</table>
Age-Specific Incidence of Invasive Pneumococcal Disease, TIBDN, 1995
Introduction of pneumococcal vaccines

Canada

- 1983 – PPV23 licensed
- 1996-9 – PPV23 programs for adults
Pneumococcal vaccination rates
Eligible adults, Canada

<table>
<thead>
<tr>
<th>Risk Group</th>
<th>Percent ever vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Canada 2001</td>
</tr>
<tr>
<td>>=65 years of age</td>
<td>42%</td>
</tr>
<tr>
<td>15-64 years of age with chronic condition</td>
<td>15%</td>
</tr>
</tbody>
</table>

Squires SG, CCDR 2001;27(10), Al-Sukhni, Vaccine 2007; NCS, 2008
How effective is pneumococcal vaccine?

- **Against pneumococcal pneumonia**
 - Effective in young healthy adults
 - In at risk adults, not effective, or effect <20% and not detectable

- **Against invasive pneumococcal disease**
 - CONTROVERSIAL
 - 8 meta-analyses; 2 Cochrane reviews
Preventive effect of pneumococcal vaccine in elderly subjects
(Christenson, Eur Resp J 2004;23:363)

- Prospective cohort of 258,754 Finnish adults >65 years of age
- Offered pneumococcal and influenza vaccines, in 1998, flu again in 1999
- Pneumonia, hospitalization, mortality examined 12/1999 to 11/2000
Preventive effect of pneumococcal vaccine in elderly subjects
*(Christenson, *Eur Resp J* 2004;23:363)*

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Effect pneumococcal vaccine</th>
<th>Effect both vaccines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital admission for pneumonia</td>
<td>0.91 (.82, 1.0)</td>
<td>0.71 (.65, .75)</td>
</tr>
<tr>
<td>Invasive pneumococcal disease</td>
<td>0.27 (.06, 1.14)</td>
<td>0.56 (.3, 1.05)</td>
</tr>
<tr>
<td>In-hospital mortality due to pneumonia</td>
<td>0.92 (.73, 1.19)</td>
<td>0.65 (.54, .78)</td>
</tr>
</tbody>
</table>
02 i) Adults in low income countries
 Riley 1977 2/2713 14/2660
 Subtotal (95% CI) 2713 2660 100.0 0.14 [0.03, 0.61]
 Total events: 2 (Vaccine), 14 (Control)
 Test for heterogeneity: not applicable
 Test for overall effect z=2.60 p=0.009

03 ii) Adults in high income countries with chronic illness
 Alfageme 2006 0/298 0/298 0.0 Not estimable
 Davis 1987 1/50 0/53 21.5 3.24 [0.13, 81.47]
 Klastersky 1986 1/26 1/21 27.8 0.80 [0.05, 13.60]
 Leech 1987 1/92 0/97 21.6 3.20 [0.13, 79.47]
 Simberkoff 1986 1/1145 1/1150 29.0 1.00 [0.06, 16.08]
 Subtotal (95% CI) 1611 1619 100.0 1.56 [0.35, 6.94]
 Total events: 4 (Vaccine), 2 (Control)
 Test for heterogeneity chi-square=0.70 df=3 p=0.87 P =0.0%
 Test for overall effect z=0.58 p=0.6

04 iii) Adults in high income countries
 Austrian 1980b 0/6782 4/6818 5.5 0.11 [0.01, 2.07]
 Gaillat 1985 0/937 1/749 4.6 0.27 [0.01, 6.54]
 Kaufman 1947 8/5750 34/5153 79.6 0.21 [0.10, 0.45]
 Ortvist 1998 1/339 5/352 10.2 0.21 [0.02, 1.77]
 Subtotal (95% CI) 13808 13072 100.0 0.20 [0.10, 0.41]
 Total events: 9 (Vaccine), 44 (Control)
 Test for heterogeneity chi-square=0.20 df=3 p=0.98 P =0.0%
 Test for overall effect z=4.52 p<0.00001
02 Immunocompetent
Dominguez 2005 -1.43 (0.35) 10.3 0.24 [0.12, 0.48]
Jackson 2003 -1.05 (0.46) 6.5 0.35 [0.14, 0.56]
Shapiro 1984 -1.20 (0.60) 3.9 0.30 [0.09, 0.97]
Shapiro 1991 -0.76 (0.04) 64.6 0.47 [0.43, 0.51]
Sims 1988 -1.20 (0.38) 9.2 0.30 [0.14, 0.63]
Vila-Corcoles 2006 -0.51 (0.50) 5.4 0.60 [0.22, 1.61]

Subtotal (95% CI)
Test for heterogeneity chi-square=6.10 df=5 p=0.30 P=18.0%
Test for overall effect z=7.27 p<0.000001

03 Immunocompetent older adults
Dominguez 2005 -1.43 (0.35) 30.3 0.24 [0.12, 0.48]
Jackson 2003 -1.05 (0.46) 18.0 0.35 [0.14, 0.66]
Shapiro 1984 -1.20 (0.60) 10.4 0.30 [0.09, 0.97]
Sims 1988 -1.20 (0.38) 26.5 0.30 [0.14, 0.63]
Vila-Corcoles 2006 -0.51 (0.50) 14.8 0.60 [0.22, 1.61]

Subtotal (95% CI)
Test for heterogeneity chi-square=2.31 df=4 p=0.68 P=0.0%
Test for overall effect z=5.90 p<0.000001

04 Cohort studies
Jackson 2003 -0.58 (0.26) 79.1 0.56 [0.34, 0.93]
Vila-Corcoles 2006 -0.51 (0.50) 20.9 0.60 [0.22, 1.61]

Subtotal (95% CI)
Test for heterogeneity chi-square=0.01 df=1 p=0.90 P=0.0%
Test for overall effect z=2.45 p=0.01

05 Case control studies
Benin 2003 -0.30 (0.28) 23.7 0.74 [0.43, 1.28]
Dominguez 2005 -1.20 (0.27) 25.1 0.30 [0.18, 0.50]
Shapiro 1984 -1.11 (0.48) 12.2 0.33 [0.13, 0.74]
Shapiro 1991 -0.63 (0.13) 39.0 0.53 [0.41, 0.69]

Subtotal (95% CI)
Test for heterogeneity chi-square=6.61 df=3 p=0.09 P=54.6%
Test for overall effect z=3.94 p=0.000008
PPV23 efficacy against IPD
Indirect cohort analyses

<table>
<thead>
<tr>
<th>Location</th>
<th>Vaccine efficacy, eligible adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 1978-1992 (1)</td>
<td>57% (45,66)</td>
</tr>
<tr>
<td>Australia 1995-2002 (2)</td>
<td>79% (-14, 96)</td>
</tr>
<tr>
<td>Scotland 2003-4 (3)</td>
<td>51% (-278,94)</td>
</tr>
<tr>
<td>Ontario 1995-2006 (4)</td>
<td>49% (34,60)</td>
</tr>
</tbody>
</table>

Rates of invasive pneumococcal disease, persons >=65 years of age

<table>
<thead>
<tr>
<th>Pre PPV program</th>
<th>Initial year of PPV program</th>
<th>Average post-PPV, pre PCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIBDN</td>
<td>58</td>
<td>44</td>
</tr>
<tr>
<td>Casper</td>
<td>-</td>
<td>53</td>
</tr>
</tbody>
</table>
Invasive pneumococcal disease, elderly
Metropolitan Toronto, 1995-2007

Rate per 100,000 per year

110
100
90
80
70
60
50
40
30
20
10
0

65-74yrs
>75 yrs

- 65-74yrs
- >75 yrs
But

- How is it possible that PPV prevents invasive pneumococcal disease, but not pneumonia?
- What is the duration of protection?
- Is hyporesponsiveness a clinically significant issue?
PPV23 efficacy against IPD

Indirect cohort analysis, TIBDN

<table>
<thead>
<tr>
<th>Vaccine efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy adults >=65 years</td>
</tr>
<tr>
<td>Immunocompromised patients</td>
</tr>
<tr>
<td>Against lab-confirmed pneumococcal pneumonia</td>
</tr>
</tbody>
</table>

Duration of Effect

<table>
<thead>
<tr>
<th>Interval since vaccine:</th>
<th>Butler et al.</th>
<th>Liu et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td><2 yrs</td>
<td>51%</td>
<td>52%</td>
</tr>
<tr>
<td>2-4 yrs</td>
<td>54%</td>
<td>47%</td>
</tr>
<tr>
<td>5-8 yrs</td>
<td>71%</td>
<td></td>
</tr>
<tr>
<td>9+ yrs</td>
<td>80%</td>
<td>46%</td>
</tr>
</tbody>
</table>
Is hyporesponsiveness clinically significant?

- Polysaccharide antigens can induce tolerance
 - Good evidence for meningococcal polysaccharide, some evidence for pneumococcal polysaccharide
- BUT
 - Data not as convincing in adults
 - Some evidence that hyporesponsiveness may be time-limited
 - Likely to be different for different serotypes

Introduction of conjugate pneumococcal vaccines, Canada

- 1983 – PPV23 licensed
- 1996-9 – PPV23 programs for adults
- Dec 2001 – PCV7 licensed
- Sep 2002-Jan 2005 – PCV7 programs
- Dec 2008 - PCV10 licensed
- ?2009 – PCV13 to be licensed
Serotype composition of pneumococcal conjugate vaccines

<table>
<thead>
<tr>
<th>7-valent</th>
<th>10-valent</th>
<th>13-valent</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6B</td>
<td>6B</td>
<td>6B</td>
</tr>
<tr>
<td>9V</td>
<td>9V</td>
<td>9V</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>18C</td>
<td>18C</td>
<td>18C</td>
</tr>
<tr>
<td>19F</td>
<td>19F</td>
<td>19F</td>
</tr>
<tr>
<td>23F</td>
<td>23F</td>
<td>23F</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6A</td>
</tr>
<tr>
<td>7F</td>
<td>7F</td>
<td>19A</td>
</tr>
</tbody>
</table>
Serotype coverage

Conjugate vs. polysaccharide vaccines

<table>
<thead>
<tr>
<th>PCV</th>
<th>4</th>
<th>6B</th>
<th>9V</th>
<th>14</th>
<th>18C</th>
<th>19F</th>
<th>23F</th>
<th>1</th>
<th>5</th>
<th>7F</th>
<th>3</th>
<th>19A</th>
<th>6A</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPV</td>
<td>4</td>
<td>6B</td>
<td>9V</td>
<td>14</td>
<td>18C</td>
<td>19F</td>
<td>23F</td>
<td>1</td>
<td>5</td>
<td>7F</td>
<td>3</td>
<td>19A</td>
<td></td>
</tr>
</tbody>
</table>

| 2 | 8 | 9N | 10A | 11A | 12F | 15B | 17F | 20 | 22F | 33F | | |
So, why not conjugate vaccines for adults?

- PC7 not great coverage in adults
 - 87% of pediatric IPD, but only 62% of adult IPD due to PCV7 serotypes (vs. >90% for PPV)
- PCV7 is more expensive, so perhaps not cost-effectiveness
- Adults are not large children
 - In immunogenicity studies, little difference between antibody response to PPV23 and PCV7 in adults
 - EIA titers are (a bit) higher, but OPA not different
1. Attachment
 - bacteria

2. Engulfment
 - Phagosome

3. Degranulation:
 - fusion of granules to phagosome

4. Respiratory Burst Stimulation of NADPH oxidase

- Phagocyte
- Lysosomes
- Microvilli
Opsonophagocytic antibodies

Without Ab and C’

Pnc are not being engulfed

With Ab and C’

Notice engulfed diplococci
Herd immunity from pediatric PCV7 programs
Decline in pneumonia admissions after routine childhood immunization with PCV7, USA

<table>
<thead>
<tr>
<th>Age group</th>
<th>Decline in rate of hospital admission for pneumonia (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td><2 years</td>
<td>39% (22,52)</td>
</tr>
<tr>
<td>18-39 years</td>
<td>28% (4, 43)</td>
</tr>
<tr>
<td>40-64 years</td>
<td>19% (-3, 35)</td>
</tr>
<tr>
<td>>=65 years</td>
<td>15% (-2, 30)</td>
</tr>
</tbody>
</table>
Will PCV13 make a difference? – I
PCV13 vs. PPV coverage of adult IPD

Toronto, 2008

Neither: 21%
PPV: 52%
PCV13: 7%
Both: 20%

Calgary, 2007

Neither: 11%
PPV: 22%
PCV13: 3%
Both: 64%
What about pneumococcal pneumonia?

- Now occurs at a rate ~15-20 x higher than IPD, CFR 5% vs. 15% for IPD

- Will PCV13 protect adults against pneumococcal pneumonia?
 - EIA titers are higher……..
Questions - I

- Will the extended spectrum conjugate vaccines deliver?
- Can we really eradicate serotypes included in conjugate vaccines?
 - By pediatric vaccination alone?
 - More rapid effect with catch-up? Adult? four doses?
- Does PCV13 prevent pneumococcal pneumonia in adults?
Questions - II

1. How extensive will serotype replacement be in adults?
 - Will it be with PPV23 serotypes or non-vaccine types?

2. Is hyporesponsiveness with PPV23 a clinically significant issue?
Invasive pneumococcal disease
Adults
TIBDN, 2002-2008

Rate per 100,000 per year

- PCV7 type
- PPV-PCV7 type
- Non-vaccine type
What are the issues for Canadian adults?

- What is the interaction between influenza and pneumococcal pneumonia/invasive pneumococcal disease?