

Coronavirus: What is it? Where did it come from? Where is it going?

Mel Krajden MD, FRCPC Medical Director, BCCDC Public Health Laboratory Professor, Pathology and Laboratory Medicine, UBC

I respectfully acknowledge that I live and work on the unceded territory of the x^wməθkwəỷəm, Skwxwú7mesh, Stó:lō and Səlílwəta?/Selilwitulh Nations.

Disclosures

Have received grant/contracts paid to my institution from:

- Roche
- Hologic
- Siemens

As these grants/contracts are unrelated mitigation is not required

Coronaviruses: What are they? Family of RNA viruses that infect many species

Alphacoronavirus

Canine coronavirus Feline coronavirus Bat coronavirus HKU2 Bat coronavirus HKU8 Porcine respiratory coronavirus Porcine epidemic diarrhoea virus Transmissible gastroenteritis virus Human coronavirus 229E

Human coronavirus NL63

Deltacoronavirus

Bulbul coronavirus HKU11 Thrush coronavirus HKU12 Munia coronavirus HKU13 Porcine coronavirus HKU15

Betacoronavirus

Human coronavirus OC43 Human coronavirus HKU1 Murine coronavirus Bat coronavirus HKU4 Bat coronavirus HKU5 Bat coronavirus HKU9

*

Severe acute respiratory syndrome CoV (SARS-CoV) Middle East respiratory syndrome CoV (MERS-CoV) Severe acute respiratory syndrome CoV-2 (SARS-CoV-2)

Porcine haemagglutinating encephalomyelitis virus

Hedgehog coronavirus Bovine coronavirus Canine respiratory coronavirus Equine coronavirus

Gammacoronavirus

Infectious bronchitis virus Beluga whale coronavirus SW1

Release of toxic, xenobiotic and recalcitrant compounds in the environment results in quicker evolution of microbes due to mutations and horizontal gene transfer, resulting in development of novel and dangerous pathogenic strains.

Environmental

Sustainability 2021

Global trading of wild animal increases contact between humans and animals that increase the risk of new zoonosis disease emergence amongst human population.

Deforestation & habitat fragmentation

Habitat loss and fragmentation is resulting in more man-animal conflicts, movement of animals (reservoirs of novel viruses & bacteria) towards human dwellings and interaction of wildlife with livestock, resulting in transfer of novel microbial pathogens.

Zoonoses 101

- Zoonotic sourced infections → depend on the prevalence of the agent in their normal reservoir(s) → spillover rate to other species
- •Reservoir to human contact rate is important \rightarrow SARS vs MERS vs SARS-CoV-2 (humanized)
- •Transmission probability $\rightarrow R_o < 1$ stuttering introductions vs $R_o > 1$ sustained transmission (variants play a role)

Wu et al. Lancet 2020

Zoonoses 101 cont'd

- Host immunity → novel agent introduced into a non immune population → cross protection from prior exposure to other human coronavirus types (HKU1, OC43, NL63, & 229E)?
- Dose → more virus → greater transmission risk (HIV) → potential for more severe illness (Varicella) → masks
 - Children have less developed immune systems → shed more respiratory viruses, and are typically less symptomatic than adults → variant specific
- Pathogenicity/virulence \rightarrow once humanized \rightarrow person-toperson transmission \rightarrow variants impact transmissibility!

Wu et al. Lancet 2020

"One Health" = Interface between humans, animals and the environment

Bernstein et al. The costs and benefits of primary prevention of zoonotic pandemics, Science Advances 2022

Prevention and control

Stages of pathogen spread

SARS-CoV-2: Where did it come from? **Direct Zoonosis Laboratory-Related Origin** В Α С D Lab Research Cave Visitor, Laboratory Spelunker or Personnel Intermediate other inadvertent Infection Animal Host Bat contact Lab Accident

Casadevall et al. Can Science Help Resolve the Controversy on the Origins of the SARS-CoV-2 Pandemic? mBio 2022

Lytras et al. The animal origin of SARS-CoV-2. Science, 2021

Genomics – Whole Genome Sequencing

- 1. Enabled SARS-CoV-2 discovery
- 2. Sequence \rightarrow creation of specific PCR tests
- 3. Vaccine design & therapeutic targets
- 4. Track spread
 - differentiate introductions of new strains from e.g., travel vs community transmission
 - determine outbreak sources: schools, LTCF, mink farms
 - monitor for variants
- 5. Reinfections, vaccine failures & escape mutants

SARS-CoV-2 Variants Based on WGS (n>130,000)

Travel vs Community Omicron BA.2 Spread

Variants can be introduced from travel or occur locally

Genomics Enables Assessment of how Mutations Impact Infectivity/Transmission/Immunity

Chen and Senft, Covid-19 and emerging viral disease: the journey from Animals to humans 2020

- Pathways to immunity occur either from infection which can have severe consequences or vaccination!
- Immune response targets both structural & nonstructural proteins
- Both antibody (Ab) & cell mediated immunity (CMI) are imp. for viral control
- Ab is easier to measure

Alanagreh el. Pathogens 2020

Where is it going?

We need to use genomics/molecular biology to create vaccines that protect against emerging variants & related viruses!

- Optimize current vaccines regimens/boosters, mix & match
- Develop
 - "Variant specific" vaccines combine different strains, multivalent
 - Next generation broadly protective SARS-CoV-2 vaccines which are able to protect against existing/future variants
 - "Universal" coronavirus vaccines protect against betacoronaviruses/pan-coronaviruses

Adapted Stanley Plotkin 2022

Finding the best shot

Aiming to prevent a future pandemic like COVID-19, scientists are looking for ways to immunize people against many, if not all, coronaviruses. Several strategies for these pancoronavirus vaccines focus on spike, the surface protein common to all members of the viral family.

Coronaviruses are grouped into four genera. They infect many species, although most have been found in bats. Of the seven known to infect people, four cause mild colds and three can be lethal.

Family matters

Jon Cohen Science 2021

Liu et al. A novel STING agonist-adjuvanted pansarbecovirus vaccine elicits potent and durable neutralizing antibody and T cell responses in mice, rabbits and NHPs. Cell Res 2022

Chimeric spike design				Vaccination strategies			
Spike	NTD	RBD	Other domains	Strategy-1	Strategy-2	Strategy-3	Strategy-4
Chimera-1	HKU3-1	SARS-CoV	SARS-CoV-2	Prime/Boost	Prime	N/A	N/A
Chimera-2	SARS-CoV	SARS-CoV-2	SARS-CoV	Prime/Boost	Prime	N/A	N/A
Chimera-3	SARS-CoV-2	SARS-CoV	SARS-CoV-2	Prime/Boost	Boost	N/A	N/A
Chimera-4	SARS-CoV-2	RsSHC014	SARS-CoV-2	Prime/Boost	Boost	Prime/Boost	N/A
SARS-CoV-2		SARS-CoV-2		N/A	N/A	N/A	Prime/Boost

Cross-reactivity and broad protection

Li, H., Saphire, E.O. Novel attempts launched toward universal Sarbecovirus vaccine. Cell Res 31, 1226-1227 (2021).

Trends in Immunology

Su et al. Developing pan- β -coronavirus vaccines against emerging SARS-CoV-2 variants of concern 2022.

SARS-CoV-2 Conclusions

• What is it?

- It's a Betacoronavirus that is here to stay!
- We are viewing this pandemic with genomic, molecular biology, & epidemiological tools that were unheard of in the past

• Where did it come from?

- It started as a zoonosis & decided that it likes humans & other animals
- Its survival depends on its ability to breed variants more will emerge
- It has relatives that pose a risk for future pandemics!

• Where is it going?

- Current spike-based vaccines protect against severe disease but not omicron acquisition – vaccine durability & what happens with waning immunity remains a big unknown
- We need better current and ongoing epidemiological population level correlates between vaccination status, infection status, & immunity
- Climate change & globalization will impact the interface between humans, animals, & the environment – we need inter-sectoral "One Health" approaches that build global pandemic resiliency

SARS-CoV-2 is the Pandemic's Pandemic

everything I say

"A lie gets halfway around the world before the truth has a chance to get its pants on" Winston Churchill