Future of COVID-19 Immunizations

Dr. Manish Sadarangani
Director, Vaccine Evaluation Center, BC Children’s Hospital Research Institute
Associate Professor, Division of Infectious Diseases, Department of Pediatrics, UBC
Physician Lead, Family Immunization Clinic, BC Children’s Hospital

1 March, 2022
Land acknowledgement

BC Children's Hospital Research Institute operates on the traditional, ancestral, and unceded territory of the Coast Salish peoples — xʷməθkʷəy̓əm (Musqueam), Sḵwx̱wú7mesh (Squamish), and Səl̓ílwətaʔ/Selilwitulh (Tsleil-Waututh) Nations.
BC Immunization Forum 2022 Presenter Disclosure

• Manish Sadarangani

• Relationships with financial sponsors:
 • Supported via salary awards from
 o BC Children’s Hospital Foundation
 o Canadian Child Health Clinician Scientist Program
 o Michael Smith Health Research BC
 • Have been an investigator on projects funded by GlaxoSmithKline, Merck, Moderna, Pfizer, Sanofi-Pasteur, Seqirus, Symvivo and VBI Vaccines
Disclosure of Financial Support

• **Potential for conflict(s) of interest:**
 - The University of British Columbia has received research funding from GlaxoSmithKline, Merck, Moderna, Pfizer, Sanofi-Pasteur, Seqirus, Symvivo and VBI Vaccines for studies conducted by Manish Sadarangani
 - Different COVID-19 vaccines, including some developed and/or licensed by these companies will be discussed in this program
Mitigating Potential Bias

• Generic vaccine names will be used
 • Company names may be mentioned initially purely for clarity

• No specific recommendations will be made on use of a specific product

• Slide deck has been approved by program organizers
Outline

• Current COVID-19 vaccines

• Recently approved COVID-19 vaccines

• Current state of COVID-19 immunization programs

• Possible future scenarios
Disclaimer: I cannot predict the future
COVID-19 vaccines for Canada – Health Canada approvals

<table>
<thead>
<tr>
<th>Platform</th>
<th>Vaccine</th>
<th>Health Canada</th>
<th>Age</th>
<th>Primary series</th>
<th>Booster</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BNT162b2 (Pfizer/BioNTech)</td>
<td>Approved</td>
<td>5y+</td>
<td>2 doses (21 days apart)</td>
<td>+6 months (18y+)</td>
</tr>
<tr>
<td></td>
<td>mRNA-1273 (Moderna)</td>
<td>Approved</td>
<td>12y+</td>
<td>2 doses (1 month apart)</td>
<td>+6 months</td>
</tr>
<tr>
<td></td>
<td>ChAdOx1-S (Oxford University/Astra Zeneca)</td>
<td>Approved</td>
<td>18y+</td>
<td>2 doses (4-12 wks apart)</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Ad26.COV2.S (Janssen)</td>
<td>Approved</td>
<td>18y+</td>
<td>Single dose</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>NVX-CoV2373 (Novavax)</td>
<td>Approved</td>
<td>18y+</td>
<td>2 doses (21 days apart)</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>CoVLP-AS03 (Medicago)</td>
<td>Approved</td>
<td>18-64y</td>
<td>2 doses (21 days apart)</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Adjuvanted vaccine (Sanofi Pasteur/GlaxoSmithKline)</td>
<td>Under review</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COVID-19 vaccines for Canada – NACI recommendations

<table>
<thead>
<tr>
<th>Age</th>
<th>Primary series (healthy individuals)</th>
<th>Booster</th>
</tr>
</thead>
<tbody>
<tr>
<td><5 years</td>
<td>No vaccine available</td>
<td>N/A</td>
</tr>
<tr>
<td>5-11 years</td>
<td>2 doses BNT162b2 (pediatric)</td>
<td>No</td>
</tr>
<tr>
<td>12-17y</td>
<td>2 doses BNT162b2 (preferred) or mRNA-1273</td>
<td>Specific populations only</td>
</tr>
<tr>
<td>18-29y</td>
<td>2 doses BNT162b2 (preferred) or mRNA-1273 or ChAdOx1-S or Ad26.COV2.S or NVX-CoV2373</td>
<td>BNT162b2 or mRNA-1273 after 6 months</td>
</tr>
<tr>
<td>30y+</td>
<td>2 doses BNT162b2 or mRNA-1273 (preferred) or ChAdOx1-S or Ad26.COV2.S or NVX-CoV2373</td>
<td>BNT162b2 or mRNA-1273 after 6 months</td>
</tr>
</tbody>
</table>

Optimal interval between doses for primary series (where applicable): 8 weeks
Vaccines may be used in heterologous (mix and match) combinations

NVX-CoV2373: Phase 3 trial

• 5 mcg recombinant nanoparticle spike protein
• 50 mcg Matrix-M adjuvant

• 2 doses
• 21 days apart

• UK trial: 18-84yo
 • 15,139 participants: 7,020 vaccine, 7,019 placebo

• USA/Mexico trial:
 • 29,582 participants: 19,714 vaccine, 9,868 placebo
NVX-CoV2373: Safety

Heath et al. NEJM 2021
NVX-CoV2373: Efficacy

Efficacy: 89.7%

Heath et al. NEJM 2021

Efficacy: 90.4%

Dunkle et al. NEJM 2021
CoVLP-AS03

• 3.75 mcg spike protein virus-like particle expressed in tobacco plants
• AS03 adjuvant (used in H1N1 influenza vaccines)
• 2 doses, 21 days apart
• Canada, USA, UK, Mexico, Argentina, Brazil

• No related serious adverse events
• Generally mild to moderate reactogenicity for 1-3 days
• Fever in less than 10%

• Efficacy: 71%

MOSAIC-1 and MOSAIC-2 ‘mix and match’ trials

- Immunogenicity and adverse events following immunization with alternate schedules of authorized COVID-19 vaccines in Canada: MOSAIC study - Mix and match of the second COVID-19 vaccine dose for SAFety and IMMunogenicity (Co-PIs: Joanne Langley, Manish Sadarangani)

<table>
<thead>
<tr>
<th>Group</th>
<th>1st dose</th>
<th>2nd dose</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mRNA-1273</td>
<td>mRNA-1273</td>
<td>Short</td>
</tr>
<tr>
<td>2</td>
<td>mRNA-1273</td>
<td>mRNA-1273</td>
<td>Long</td>
</tr>
<tr>
<td>3</td>
<td>mRNA-1273</td>
<td>BNT162b2</td>
<td>Short</td>
</tr>
<tr>
<td>4</td>
<td>mRNA-1273</td>
<td>BNT162b2</td>
<td>Long</td>
</tr>
<tr>
<td>5</td>
<td>BNT162b2</td>
<td>BNT162b2</td>
<td>Short</td>
</tr>
<tr>
<td>6</td>
<td>BNT162b2</td>
<td>BNT162b2</td>
<td>Long</td>
</tr>
<tr>
<td>7</td>
<td>BNT162b2</td>
<td>mRNA-1273</td>
<td>Short</td>
</tr>
<tr>
<td>8</td>
<td>BNT162b2</td>
<td>mRNA-1273</td>
<td>Long</td>
</tr>
<tr>
<td>9</td>
<td>ChAdOx1-S</td>
<td>mRNA-1273</td>
<td>Short</td>
</tr>
<tr>
<td>10</td>
<td>ChAdOx1-S</td>
<td>mRNA-1273</td>
<td>Long</td>
</tr>
<tr>
<td>11</td>
<td>ChAdOx1-S</td>
<td>Pfizer/BioNTech</td>
<td>Short</td>
</tr>
<tr>
<td>12</td>
<td>ChAdOx1-S</td>
<td>Pfizer/BioNTech</td>
<td>Long</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>1st dose</th>
<th>2nd dose</th>
<th>3rd dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>BNT162b2</td>
<td>BNT162b2</td>
<td>BNT162b2</td>
</tr>
<tr>
<td>2b</td>
<td>BNT162b2</td>
<td>BNT162b2</td>
<td>mRNA-1273</td>
</tr>
<tr>
<td>3b</td>
<td>mRNA-1273</td>
<td>mRNA-1273</td>
<td>BNT162b2</td>
</tr>
<tr>
<td>4b</td>
<td>mRNA-1273</td>
<td>mRNA-1273</td>
<td>mRNA-1273</td>
</tr>
<tr>
<td>5b</td>
<td>mRNA-1273, BNT162b2 (any order)</td>
<td>mRNA-1273</td>
<td></td>
</tr>
<tr>
<td>6b</td>
<td>mRNA-1273, BNT162b2 (any order)</td>
<td>BNT162b2</td>
<td></td>
</tr>
<tr>
<td>7b</td>
<td>ChAdOx1-S</td>
<td>Any mRNA</td>
<td>BNT162b2</td>
</tr>
<tr>
<td>8b</td>
<td>ChAdOx1-S</td>
<td>Any mRNA</td>
<td>mRNA-1273</td>
</tr>
</tbody>
</table>
Current status of vaccination in BC

http://www.bccdc.ca/health-professionals/data-reports/covid-19-surveillance-dashboard
Current status of vaccination in BC

The future is about boosters (in Canada)

http://www.bccdc.ca/health-professionals/data-reports/covid-19-surveillance-dashboard
Global COVID-19 vaccine coverage

• 10.8 billion doses administered
• At least one dose: 63%
• Completely vaccinated (primary series): 56%
 • Range: 0.07% to 94.93%
 • 43 countries at less than 20%

Globally, initial vaccine rollout is ongoing

http://https://ourworldindata.org/covid-vaccinations
Respiratory viruses are all seasonal, but not the same

Influenza

2019-2020

RSV

2020-2021

2021-2022

Future boosters depends on virus evolution...

- **UK Scenario 1: Reasonable best-case**

 - Further variants with minimal escape from vaccine/infection-induced immunity
 - **Existing vaccines annually for vulnerable only**

Future boosters depends on virus evolution...

• **UK Scenario 1: Reasonable best-case**
 - Further variants with minimal escape from vaccine/infection-induced immunity
 - **Existing vaccines annually for vulnerable only**

• **UK Scenario 2: Central optimistic**
 - Annual seasonal infection with good and bad years
 - Significant waning of immunity and/or new major variants
 - **Annual vaccination for vulnerable every year and all in some years**

Future boosters depend on virus evolution...

- **UK Scenario 3: Central pessimistic**
 - Unpredictable emergence of variants for many years, at least once per year
 - Vaccines effective against severe outcomes
 - **Widespread annual vaccination with updated vaccines**

For a detailed understanding of the key scenarios and their implications, please refer to the linked document:

Future boosters depends on virus evolution...

• UK Scenario 3: Central pessimistic

<table>
<thead>
<tr>
<th>Transmissibility</th>
<th>Immune escape</th>
<th>Intrinsic severity</th>
<th>Realised severity</th>
</tr>
</thead>
</table>

• Unpredictable emergence of variants for many years, at least once per year
• Vaccines effective against severe outcomes
• **Widespread annual vaccination with updated vaccines**

• UK Scenario 4: Reasonable worst-case

<table>
<thead>
<tr>
<th>Transmissibility</th>
<th>Immune escape</th>
<th>Intrinsic severity</th>
<th>Realised severity</th>
</tr>
</thead>
</table>

• Repeated and unpredictable emergence of variants with significant immune escape
• Driven by high global incidence, incomplete global vaccination, animal reservoirs
• Voluntary protective behaviours are largely absent and/or a source of societal conflict
• **Widespread annual vaccination with updated vaccines – feasibility?**
Seasonal influenza vaccine pathway

Current influenza vaccine productions

- Egg-based vaccine strain virus
- Mass-production of viruses
- Purification
- Formulation and filling
- Shipping
- Vaccination

- Cell-based vaccine

Chen et al. J Biomed Sci 2020
Combined COVID-19/Influenza vaccine?
Broadly-protective beta coronavirus vaccine?

Example BPCoV2 ideal Target Product Profile:
- 80% or more efficacy against moderate-to-severe disease caused by variants;
- Prevention of viral infection and transmission;
- Thermostable at 4-8°C;
- Use in all ages and pregnant women;
- Use in the immunocompromised;
- Potential as booster vaccine.

Schematic ‘bookends’ for the new CFP:

- Broadly Protective SARS-COV-2 (prevent disease caused by all VOC & emergent variants);
- Multivalent variant formulations or smart immunogen design;
- Broadly Protective Beta-COV (prevent disease caused by top Beta-CoV threats);
- 2022-2023;
- 2022-2023;
- 2024+.

Example of a BPBC ideal Target Product Profile:
- Active immunization of at-risk individuals, based on specific risk factors, to prevent disease and mortality (proxy - robust [80%] neutralization against a panel of Betacoronaviruses predictive of protection against disease);
- Prevention of virus infection and transmission;
- Thermostable at 4-8°C;
- Use in all age groups and pregnant women;
- Use in the immunocompromised;
- Suitable for use in outbreak situation.
Thank you

msadarangani@bcchr.ubc.ca
https://www.bcchr.ca/vec
Twitter: @manishs_ @VEC_ubc