The importance of shellfish in the traditional diet of First Nation Communities: findings from the First Nations Food, Nutrition and Environment Study

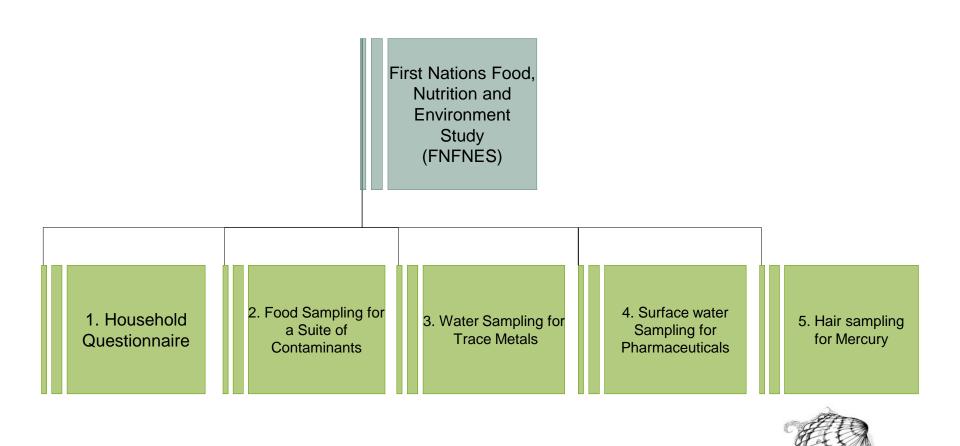
Dr. Laurie Chan, Professor, Department of Biology & Canada Research Chair in Toxicology and Environmental Health

First Nations Food, Nutrition and **Environment Study**

Funding for this study is provided by Health Canada.

The information and opinions expressed in this presentation are those of the authors/researchers and do not necessarily reflect the official views of Health Canada.

What was the study about?

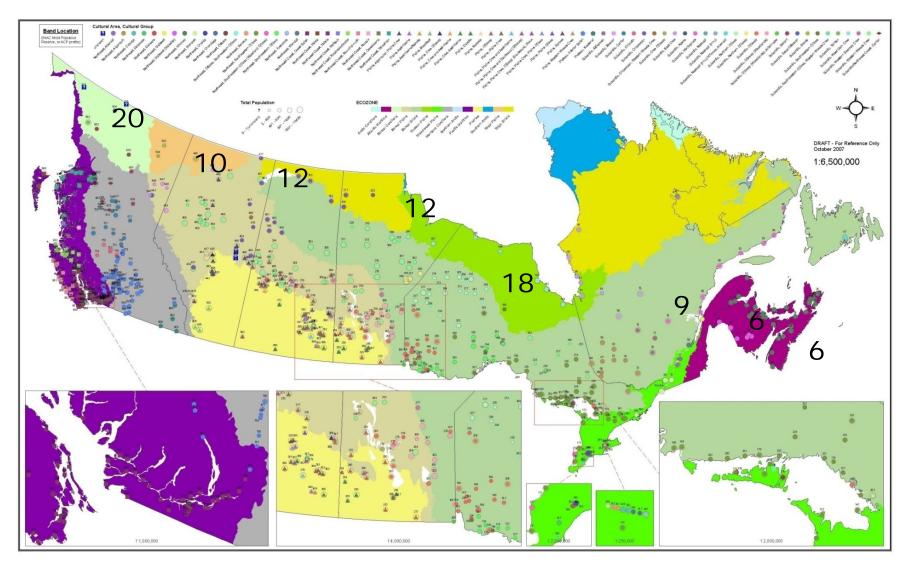

To find out:

- What kinds of traditional and market foods were people eating?
- How well were people eating?
- Is traditional food safe to eat?
- What level of mercury were people exposed to?
- What amount of trace metals and pharmaceuticals were in the water?

This study is led by

- Dr. Laurie Chan, Toxicologist and Professor, University of Northern BC
- Dr. Olivier Receveur, Nutritionist and Professor, Université de Montréal
- Dr. Donald Sharp, Assembly of First Nations
- With contributions from: Dr. Constantine Tikhonov, Dr. Harold Schwartz, and Dr. Caroline Mimeault.

First Nations First Nations Food, Nutrition and Environment Study


First Nations First Nations Food, Nutrition and Environment Study

- 100 communities from 2008-2018
- ~8 12 communities per year and returning back in the last 2 years

Systematic Random Sampling by region and ecozone

FNFNES Sampling Framework

21 BC communities in 5 Ecozones participated in the study in 2008-9

Which communities participated?

- •Kitsumkalum
- Nat' oot' en Nation
- Namgis
- Hagwilget Village
- Fort Nelson
- Sliammon
- Moricetown

- Prophet River
- Samahquam
- Tahltan First Nation
- Doig River
- Douglas
- •Iskut
- Saulteau

- •Lil' wat
- Tsay Keh Dene
- Skidegate
- Lower Nicola
- •Tl' azt' en Nation
- Nuxalk Nation
- Splatsin

Who participated

- 19 years or older
- Able to provide written consent
- Self-identifies as a FN persons living on reserve

- 1103 adults from BC from 1624 housholds
- 705 women and398 men
- average age:
- 44 years old (women)
- 46 years old (men)

6 communities in the Pacific Maritime/Subarctic/Northwest Coast Ecozone

- •Kitsumkalum
- Namgis
- Hagwilget Village
- Sliammon
- Skidegate
- Nuxalk Nation

What kinds of traditional and market foods were people eating?

Top 5 traditional foods eaten in BC:	Average amount eaten per week	Top 5 market foods eaten in BC:	Average amount eaten per week
1. Moose meat	1/2 cup	1. Soup	~2 1/2 cups
2. Salmon	1/2 cup	2. Vegetables	2 cups
3. Deer meat	~3 tbsp	3. Potatoes	1 1/2 cups
4. Trout	2 tbsp	4. Fruits	1 1/2 cups
5. Elk meat	2 tbsp	5. Grains (rice, barley)	1 1/3 cups

Consumption of shellfish and salmon in BC First Nations (N=1103)

	consumers	Total	population	١	Consumers only			
	n (%)	mean (SD)	median	range	mean (SD)	median	range	
Clam	275 (25)	0.71 (2.48)	0	0-37.4	2.85 (4.3)	1.56	0.25-37.4	
Crab	278 (25)	0.79 (2.7)	0	0-31.2	3.12 (4.7)	1.56	0.25-31.2	
Oyster	124 (11)	0.32 (1.75)	0	0-31.2	2.86 (4.5)	2.08	0.25-31.2	
Mussel	71 (6)	0.13 (0.82)	0	0-15.6	2.06 (2.58)	1.56	0.25-15.6	
Salmon	940 (86)	16.37 (22.4)	7.96	0-130.1	19.21 (23.1)	10.11	0.36-130.1	

Values are mean intakes in grams per day;

SD: standard deviation

Consumption of shellfish and salmon in 6 BC First Coastal Nations (N=369)

	Consumers	Co	onsumers only	
	n (%)	mean	min	max
Clam	244 (66)	3.0	0.3	37.4
Crab	216 (59)	3.3	0.3	31.0
Oyster	83 (22)	3.0	0.3	31.2
Mussel	50 (14)	1.8	0.3	16
Salmon	359 (97)	26.7	0.4	130

Nutrient contents in shellfish and salmon

	protein	calcium		iron	zinc
clam	25.55		92	2.81	2.73
mussel	23.8		33	6.72	2.67
oyster	8.87		92	7.16	61.04
crabs	22.32		59	0.43	5.47
salmon	25.72		28	0.91	0.56

Values per 100 g of edible portion (g/100g)

Clams										
	N	Food	Protein	% contribution	Calcium	% contribution	Iron	% contribution	Zinc	
				% contribution		% contribution		% contribution		-
males	n									
19-50	44	2.9	0.75	1.3	2.7	0.3	0.08	1.4	0.08	0.9
>50	48	3.1	0.79	1.4	2.9	0.3	0.09	1.5	0.08	0.9
females										
19-50	87	3.1	0.80	1.6	2.9	0.4	0.09	1.1	0.09	1.3
>50	65	2.9	0.69	1.4	2.7	0.3	0.08	1.6	0.08	1.2

Crabs										
	N	Food	Protein	% contribution	Calcium	% contribution	Iron	% contribution	Zinc	
males										
19-50	44	4.5	1.0	1.8	2.7	0.3	0.02	0.3	0.2	2.6
>50	38	4.0	0.9	1.5	2.4	0.2	0.02	0.3	0.2	2.3
females										
19-50	80	3.0	0.6	1.3	1.7	0.2	0.01	0.2	0.2	2.3
>50	54	2.6	0.6	1.1	1.5	0.1	0.01	0.2	0.1	2.0

Mussels										
		Food	Protein		Calcium		Iron		Zin	С
	N			% contribution		% contribut	tion	% contrib	ution	
males										
19-50	11	1.1	0.3	0.4	0.4	0.0	0.1	1.3	0.03	0.3
>50	5	2.6	0.6	1.1	0.9	0.1	0.2	2.9	0.07	0.7
females										
19-50	17	1.5	0.4	0.7	0.6	0.1	0.1	1.3	0.05	0.7
>50	17	2.4	0.6	1.1	0.8	0.1	0.2	3.1	0.07	1.0

Oysters										
		Food	Protein		Calcium		Iron		Zir	nc
				% contribution		% contribution	า	% contribution		
	N									
males										
19-50	21	3.0	0.3	0.5	2.8	0.3	0.2	3.7	1.9	19.8
>50	16	4.2	0.4	0.6	3.9	0.4	0.3	5.4	2.6	27.2
females										
19-50	30	2.6	0.2	0.5	2.4	0.3	0.2	2.2	1.7	24.9
>50	16	2.5	0.2	0.4	2.3	0.2	0.2	3.5	1.5	22.0

Salmon										
		Food	Protein		Calciun	n	Iron		Zin	С
				% contribution		% contrib	ution	% contribution		
	N									
males										
19-50	69	33.0	8.5	14.9	9.2	1.2	0.3	4.8	0.2	1.9
>50	65	31.7	8.1	14.0	8.8	0.9	0.3	4.7	0.2	1.8
females										
19-50	140	21.4	5.5	10.9	6.0	0.7	0.2	2.4	0.1	1.8
>50	84	27.1	7.0	13.9	7.6	0.8	0.2	4.8	0.2	2.2

Sampling of traditional food (30 samples/community)

A total of 429 food samples representing 158 different types of traditional food were collected for contaminant analyses

- Contaminant measured include:
 - pesticide residues,
 - polychlorinated biphenyls (PCBs),
 - polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans,
 - Trace elements and heavy metals.
 - PBDE
 - PFCs
 - PAH

Selected contaminant levels in shellfish and salmon in BC

	Hg	methyl-Hg	НСВ	DDE	PCB
	μg/g	ng/g	ng/g	ng/g	ng/g
clam	0.004	3.86	0	0	0
mussel	0.01	8	0.13	0.39	0.16
oyster	0.01	5	0	0	0
crabs	0.04	68.20	0	1.82	0
salmon	0.03	32.02	1.10	2.76	0.72

Contaminants in Traditional Food Samples

- Levels of contaminants are within levels that are typically found in this region.
- Intake of contaminants (except cadmium) from traditional food is below the guideline levels and is not a cause for concern.
- To decrease exposure to cadmium, limit intake of the following foods:
 - moose kidney and liver: not more than 1/2 a cup per month
 - seaweed: not more than 1/2 a cup per day
- It is recommended to replace lead shot with steel shot to avoid lead contamination.

41% of BC First Nations experienced food insecurity

- 40% worried that their food would run out before they could buy more
- 36% said that food they bought didn't last and there wasn't any money to buy more
- ◆ 12% cut the size of their meals or skipped meals
- 7% were hungry but did not eat because they couldn't afford enough food

91% of participants would like to eat more traditional food but..

- Lack of equipment or transportation
- Lack of availability
- Lack of time
- Difficult to access
- Government/firearms certificate regulations

Current Nutrition Issues

- Nutrients of concern Vitamin A, calcium, iron
- Food security

Diet related concerns

- Obesity
- Diabetes
- Heart disease

Traditional Food

- Important source of many nutrients that are not consumed in sufficient amounts.
- Diets are healthier when traditional food is eaten than if just market foods are eaten.

Acknowledgment

- All participants and the participating First Nations
- All the community research assistants
- The FNFNES research team
- Funding from Health Canada and the Canadian Institute for Health Research

Contact Information

WEB Site: www.fnfnes.ca

