Infant Botulism

Environmental Health – Food Protection Services BC Centre for Disease Control

BC Centre for Disease Control An Agency of the Provincial Health Services Authority Health Services

Province-wide solutions. Better health.

Topics

- History of Botulism
- Mode of Action
- Infant Botulism (Intestinal Botulism)
 - Symptoms & Diagnosis
 - Treatment BabyBIG
 - Neurotoxin Types & Groups
 - Risk Factors
- Food Sources (honey)
- Laboratory Diagnosis
- References

Botulism – a short history

- Emperor Leo VI of Byzantium (886-911 A.D.) forbade his people to eat blood sausages.
- 1793, southern Germany, 6 of 13 died, initially diagnosed as belladonna poisoning. "Blunze" - pig stomach/blood preserved by smoking.
- 1820-22 in Germany Justinus Kerner collected data on 230 cases of sausage poisoning due to "corpse acid".
- Recognized in Russia in 1818
 7 cases of paralytic illness in Yakutsk due to salted fish. Known as ichthyism!
- ~1900 Dr. van Ermengem isolated an anaerobic sporeforming bacillus from the spleen of a victim
 → described this organism as *Bacillus botulinus*

1924 – Albany, Oregon

- Home-canned string beans
- All 12 people family members died

Figure 3 — Funeral of family wiped out by botulism caused by home-canned string beans at Albany, Oregon, in 1924. Altogether there were 12 deaths. (Photo courtesy of Dr. Philip B. Cowles, Yale University.)

C. botulinum

Gram positive

Anaerobe

Spore Former

Oval subterminal endospores

Motile

Botulism – what is the disease?

- Botulism causes an intoxication that damages the nerves
- Ingestion of protein toxin blocks the release of acetylcholine at neuromuscular junctions
- This stops muscle contractions and paralyzes skeletal muscle cells – "muscular paralysis".

Martini, Anatomy & Physiology, 6th ed.

•FIGURE 12–19

The Function of a Cholinergic Synapse

Martini, Anatomy & Physiology, 6th ed.

•FIGURE 12–20 The Mechanism of Drug Action at a Cholinergic

1

Synapse. Factors that facilitate neural function and make neurons more excitable are shown in violet. Factors that inhibit or depress neural function are in blue.

Martini, Anatomy & Physiology, 6th ed.

Types of Botulism

- Food Botulism
- Wound Botulism
- Infant Botulism
- Child/Adult Botulism

Infant Botulism

- Affects children less than 12 months old
 - Median age: 10 wks (2 wks to 1 yr)
 - exception: 7.6 days for *C. baratti* (rapid progression)
- Ingestion of *C. botulinum* spores cause the illness (food or environmental)
 - in situ production of toxin by Clostridium bacteria, gut microflora fail to competitively inhibit outgrowth of spores
- Mild to severe illness
 - Feeding difficulties, mild hypotonia, floppy neck → respiratory failure, infant death
- Incubation period from 3 to 30 days after exposure

Symptoms & Diagnosis

- 1st symptom constipation (95%)
- "Floppy baby", listless, lethargic, poor head control
- Difficulty swallowing & sucking, weak cry
- Flaccid expression
- Pupils don't react to light
- Weak gag reflex

Diagnosis:

- EMG electromyogram
- Stool specimen

Treatments

- Supportive and respiratory care
- Nasogastric feeding, mechanical respiration
- BabyBIG
- Wait until recovery of nerve function: regeneration of terminal motor neurons
- Hospital stays from one month to a year

Differences in Outcomes of Infants Treated with BIG-IV (BabyBIG)

(Arnon et al, N Engl J Med. 2006;354:462-471)

Randomized Placebo-Controlled Trial (129 Infants)

Duration of	Placebo	BIG-IV			
Hospitalization	5.7 wk	2.6 wk			
ICU care	5.0 wk	1.8 wk			
Mechanical ventilation	4.4 wk	1.8 wk			
Tube feeding	10.0 wk	3.6 wk			
Total hospital charges	\$163,000	\$74,800			
Open-Label Use (366 int	fants)				
Hospitalization	BIG-IV @4-7 days hosp	BIV-IV@ <4 days hosp			
	2.9 wk	2.0 wk			
All differences statistically significant p<0.001					

Botulism neurotoxin types

A, B, E, F affect humans
C₁, C₂, D affect birds, mammals
G not found to cause illness
AB, BF dual toxin strains

(*C. butyricum, C. baratii* also known to produce type E & F toxins)

.

Muscle cell

Botulism Groups

	Group I	Group II	Group III	Group IV
	Proteolytic	Non-proteolytic	Non-proteolytic	
Neurotoxin	A, B, F	B, E, F		
Optimal temp	35-40°C	18-25°C	40°C	37°C
Range temp survival (min/max)	10-48°C	3-45°C	ND	ND
рН	4.6	5.0	ND	ND
Salt	10%	5%	ND	ND
Aw	0.94	0.97	ND	ND
Spore Inactivation Step [†]	25' @ 100ºC 0.1-0.2' @ 121ºC	<0.1' @ 100°C <0.001'	<0.1 to 0.9' @ 100∘C	<0.8 to 1.1' @100ºC

[†]- Note: in commercial canning operations, a 12D (12 log reduction) process is typically 2.4 min at 121°C (250°F)

Water Activities of various foods

Food	<u>a_w</u>
 Fresh fruit, veg, meat, fish 	>0.98
 Cooked meat, bread 	0.98 - 0.95
 Cured meat products, cheeses 	0.95 - 0.91
 Sausages, syrups 	0.97 - 0.87
 Flours, rice, beans 	0.87 - 0.80
 Jams, marmalades 	0.80 - 0.75
 Candies 	0.75 - 0.65
 Dried fruits 	0.65 - 0.60

Minimal a_w for growth of....

<u>Microorganims</u>	<u> </u>
 Most bacteria 	0.91 - 0.88
 Most yeasts 	0.88
"Regular molds"	0.80
 Halophilic bacteria 	0.75
 Xerotolerant molds 	0.71
 Osmophilic yeasts 	0.62 - 0.60

Processing of Foods for a_w

Photo: BC Centre for Disease Control

Processing of Foods for a_w

Chilled mirror dewpoint technique

Photo: BC Centre for Disease Control

Adult classical Botulism: BC case "Stink Eggs" Type E Botulism

Photo: BC Centre for Disease Control

Infant Botulism Types & Risk Factors

- Type A is found in the west / Type B is found in the east
- Risk factors and predisposing conditions...
 - ingestion of honey risk of Type B

- parent has daily contact with soil / living on a farm / living in area following an earthquake
- windy, high soil water and alkaline content
- possible seasonal trend: cases between March and October (not winter)
- exclusively breast-fed infants during weaning (change in gut microflora)
- introduction of first formula feeding
- age onset differences: formula-fed: 7.6 weeks, breast-fed: 13.7 weeks (±8.4 weeks)
- host factors role in pathogenesis

Spores found in....

- Honey
- Yard soil
- Vacuum cleaner dust
- Infant Formulas

Laboratory Investigation – Infant Botulism

Specimen to be submitted: **stool

NOT blood or serum (rarely does toxin circulate in infant blood)

Exception: early in course of infection

Laboratory Methods

- Mouse assay intraperitoneal Inject culture filtrates, food filtrates or serum into mice
- Look for symptoms
 - Wasp-like or constricted waist
 - Ruffled hair
 - Difficulty breathing, failure to right response
 - Death
- TAT for mouse assay
 - Serum: 48 hours minimum for negative result
 - If positive, signs may be observed within 4 to 8 hrs post-inoculation, usually 24 hrs is required.
 - Culture (stool, food): 5 to 7 days

Infant Formula Problems

- Botulinum Type B in Infant Powder Ireland 2001 (SMA nutrition: white infant formula)
- Thiamine Deficiency in Infant Formula, Israel, November 2003
- Enterobacter sakazakii in Powdered Infant Formulas, Canada, July 2002
- Bacillus cereus in Powdered Infant Formulas, Survey, Germany, 1994

BCCDC Contacts for Case Management and Investigations

- When botulism is suspected, immediately inform the local Medical Health Officer
- Contact the on-call Physician for BCCDC at 604.312.9222 regarding provision of botulism antitoxin
- Contact the on-call Medical Microbiologist at Laboratory Services (BCCDC) 604.661.7033 for consultation and approval of sample testing
- Phone Food Poisoning Laboratory (BCCDC) 604.707.2611 for priority sample submission information
- Phone Food Protection (BCCDC) 604.707.2440 for consultation regarding Food Recalls & investigation

BCCDC Reference Links:

1. Communicable Disease Control Chapter 1 - Botulism

2. PHSA Programs and Services

References

- Committee on Infectious Diseases, American Academy of Pediatrics, Red Book®: 2006 Report of the Committee on Infectious Diseases - 27th Ed. Accessed from http://online.statref.com/document.aspx?fxid=76&docid=89 on November 9, 2007.
- Brook, I. Infant Botulism. J of Perinat. 2007:27:175-80.
- Fox, C.K. Recent advances in Infant Botulism. Ped Neurol. 2005;32(3):149-154.
- Horowitz, B.Z. Botulinum Toxin. Crit Care Clin. 2005;21:825-839.
- Laboratory Services, BC Centre for Disease Control (photographs)
- Lindstrom, M and H. Korkeala. Laboratory Diagnosis of Botulism. Clin Micro Rev. 2006;19(2):298-314.
- Long, S.S. Infant Botulism and Treatment with BIG-IV (BabyBIG). The Pediatric Infectious Disease Journal 2007;26(3):261-262.
- Martini, F. Fundamentals of Anatomy and Physiology, 6th ed. 2004.
- Sobel, J. Botulism. CID 2005;41:1167-73.