# REPORTED:

## Selected Communicable Diseases other than COVID-19

## EXAMINING THE SOCIETAL CONSEQUENCES OF THE COVID-19 PANDEMIC

#### Key Findings:

- Response measures introduced to reduce transmission of COVID-19 and changes in individuals' behaviour may have also led to the decline in cases of several reportable communicable diseases compared to previous years.
- Decreases during 2020 in the communicable diseases shown in this report may be due to reduced social contacts, travel restrictions, more frequent cleaning (i.e., surfaces and hands), and increased use of personal protective equipment. Decreases in testing may have also contributed to the decline in cases identified.

Vaccines are available for some of the communicable diseases discussed in this report. For information on <u>BC's Immunization Schedules</u>, please see details from HealthLinkBC for:

- Infants and Children
- School Age Children
- Adults, Seniors, and Individuals at High Risk

## **Situation**

Response measures to the COVID-19 pandemic included temporary restrictions on traveling; visiting long-term care or seniors' assisted living facilities; indoor dining at restaurants, pubs, and bars; and gatherings and events.<sup>1,2</sup> People were encouraged to physically distance themselves from others, sanitize frequently touched surfaces and objects more often than usual, wear masks, wash hands, and self-isolate if exposed to anyone infected with COVID-19.2 Many workplaces also implemented remote working policies, and enhanced infection control practices with guidance from WorkSafeBC.<sup>3,4</sup> In addition to reducing the transmission of COVID-19, these measures may have decreased the number of new cases for several other communicable diseases in 2020, compared to previous years.

## Background

Communicable diseases are infectious diseases that are contagious. They can be spread from person to person, through a vector (e.g., insects), through contaminated foods, water, or surfaces, or from the environment.<sup>5</sup> Infectious agents include bacteria, viruses, or parasites.<sup>6</sup> Some communicable diseases are reportable in British Columbia under the Reporting Information Affecting Public Health Regulation (B.C. Reg. 167/2018), under the Public Health Act.<sup>7</sup> The BC Centre for Disease Control (BCCDC) monitors, evaluates, and reports on more than 80 reportable communicable diseases in the province, including respiratory (droplet and airborne infections), enteric or water/foodborne, sexually transmitted and bloodborne, vector-borne, and zoonotic diseases.a,7,8

<sup>a</sup> This report provides an overview of recent trends in selected respiratory and foodborne diseases only.

## For more information about public health measures during COVID-19, see:

COVID-19 Orders and Notices

BC Centre for Disease Control: Infection Control





#### Indigenous Peoples and Truth and Reconciliation

As the original Peoples of what is now known as Canada, First Nations, Métis, and Inuit Peoples have pre-existing rights (commonly referred to as Indigenous or Aboriginal rights) that are recognized and affirmed by Section 35 of the *Constitution Act*, 1982. First Nations, Métis, and Inuit Peoples are distinct Indigenous groups in Canada that each have their own customs, practices, and traditions.

Prior to contact, communicable diseases amongst First Nations and Inuit were limited and did not pose an existential threat. The arrival of Europeans introduced new communicable diseases that caused devastating illness and death. First Nations, Métis and Inuit Peoples continue to face many historical and ongoing structural inequities that make them more susceptible to many kinds of communicable diseases. In addition, the BC health care system continues to discriminate against Indigenous Peoples (First Nations, Métis, and Inuit) as documented in the In Plain Sight report. As a result, many Indigenous individuals face challenges in accessing culturally safe health services. Indigenous Peoples have remained strong and resilient through the COVID-19 pandemic. Indigenous leaders and communities have prioritized public health supports to manage both COVID-19 and other communicable diseases, while ensuring community wellness and cultural priorities continued to be met through these challenging times.

# *The First Nations Health Authority's Statement on the Societal Consequences of BC's COVID-19 Response*

COVID-19 and the public health measures taken to respond to it have reinforced existing inequities and discrimination present in BC's health and wellness system. First Nations people in BC have been disproportionately affected by COVID-19. Data shows that First Nations people in BC have tested positive for COVID-19 at a higher rate than other residents, have had lower median ages of hospitalization and have higher rates of admission to intensive care units and death from the virus. The impact of COVID-19 on social determinants such as housing, food security, education and geography has had ripple effects on the health and wellness of First Nations in BC. This is evident in the significant increase in toxic drug deaths during the pandemic and the elevated rates of anxiety, depression and grief experienced by many First Nations people, which is further layered with intergenerational trauma and loss from past pandemics. Despite these challenges, First Nations people in BC have responded to the pandemic with strength and resilience that is grounded in culture and community. Families have found new ways to connect, support their communities and keep each other well. The First Nations Health Authority (FNHA) has worked guickly to expand virtual services, and proudly served as a partner to First Nations communities in BC to advance community priorities and ensure support and services have been available throughout the pandemic. The FNHA's full statement on the societal consequences of BC's COVID-19 response can be found at: https://www.fnha.ca/ Documents/FNHA-COVID-19-Statement.pdf.

Some public health measures put in place to limit the spread of COVID-19 may have impacted the incidence of other reportable communicable diseases. As COVID-19 is a respiratory infection, public health measures to slow the spread of COVID-19 may have slowed and prevented the spread of other respiratory infections (e.g., influenza, pertussis). Restrictions or limitations on the size of gatherings, as well as physical distancing measures, can also limit the spread of respiratory infections. Additionally, restrictions on travel, particularly to tropical destinations where certain infections are more common than in BC (e.g., malaria, Shigella infections, typhoid fever, hepatitis A), have likely led to fewer reports of these infections in BC in returning travellers. Environmental measures may have similarly reduced the potential for infections to be transmitted through contaminated surfaces (e.g., through more frequent cleaning). Lastly, decreased testing may have resulted in fewer diagnoses of reportable communicable diseases. This is more likely for reportable communicable diseases that are mildly symptomatic and those that may be present without symptoms (e.g., sexually transmitted infections). The diseases included in this report were chosen because they are examples of respiratory, foodborne, or travel-related diseases, and therefore likely to have been affected by COVID-19 response measures. Sexually transmitted and bloodborne infections are not included here because they are being considered for separate reporting. For further information on reportable diseases in BC, including surveillance reports, please visit the BCCDC webpage on communicable diseases.

## **Equity Considerations**

Due to structural inequities in our society, some groups of people are more likely to contract communicable diseases, get sicker, and take longer to recover.<sup>9</sup> Specifically, the social determinants of health (e.g., income, housing, food security) affect the distribution of infectious diseases by influencing exposure to diseases, impacting access to health services, and rendering some people more likely to experience adverse effects.<sup>10</sup> For example, poverty can be associated with reduced access to material and social resources that can lead to unsafe habitation (e.g., crowded living conditions), food insecurity and malnutrition (including maternal-fetal malnutrition), poor water quality, and increased exposure to infectious agents, as well as environmental toxins.<sup>11</sup> These circumstances can contribute in turn to the spread of many pathogens, including acute and chronic infectious diseases.<sup>11,12</sup> An overview of inequities between groups of people for each of the eight diseases examined in the findings section is out of scope for this report; however, please see the following for more information about communicable diseases and the social determinants of health:

- <u>Canada communicable disease report: Social</u> determinants of health
- Infectious disease, social determinants and the need for intersectoral action

## **Findings**

This section describes case counts for selected communicable diseases in BC, before and after March 2020 (see Appendix A for information about data sources and methodology). Of note, case counts reflect diagnoses for these communicable diseases. The number of diagnoses may be impacted by delays or avoidance in seeking medical care (e.g., difficulty accessing medical care or avoidance due to concern regarding COVID-19 infection).<sup>13,14,15</sup> In addition, health provider and testing resources may have been less available due to re-deployment to respond to COVID-19.<sup>16</sup>

Table 1 provides an overview of trends in the moving averages of cases of selected respiratory and foodborne diseases in 2020, compared to previous years (see Appendix A for a definition of the moving average). Three out of eight communicable diseases analyzed in this report showed sustained decreases in the moving averages in 2020, following the implementation of public health measures, compared to the moving averages in previous years. Temporary declines in moving averages were observed for the other five diseases in 2020, compared to the moving averages in previous years.

| Primary<br>Transmission<br>Route | Diseases with Sustained<br>Decrease in 2020   | Diseases with Temporary<br>Decrease in 2020                                                                              |
|----------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Respiratory                      | <ul><li>Mumps*†</li><li>Pertussis*†</li></ul> | <ul> <li>Invasive pneumococcal disease<br/>(IPD)**</li> <li>Invasive group A streptococcal<br/>disease (iGAS)</li> </ul> |
| Foodborne                        | • Shigella^                                   | <ul> <li>Campylobacter</li> <li>Shiga-toxigenic Escherichia coli<br/>(E. coli)</li> <li>Giardia</li> </ul>               |

 Table 1: Overall Trend in Select Communicable Diseases in BC in 2020, Compared to Previous Years

Legend: \*vaccines are available; \*\*vaccines are available for many but not all pneumococcal serotypes; †impacting mainly children, with severe outcomes primarily impacting infants; ^commonly travelassociated.

### Respiratory Diseases: Influenza-like Illness, Mumps, Pertussis, Invasive Pneumococcal Disease, and Invasive Group A Streptococcal Disease

FIGURE 1

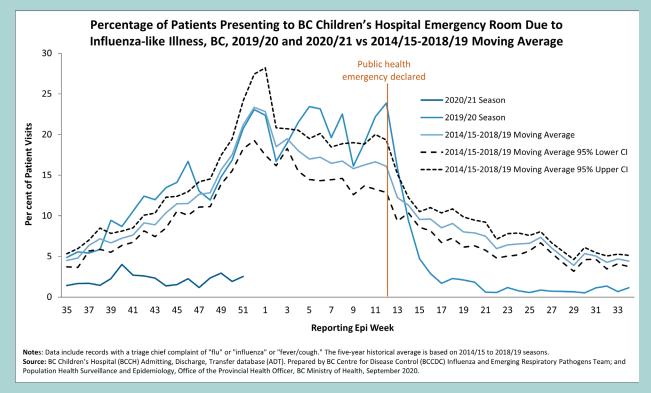
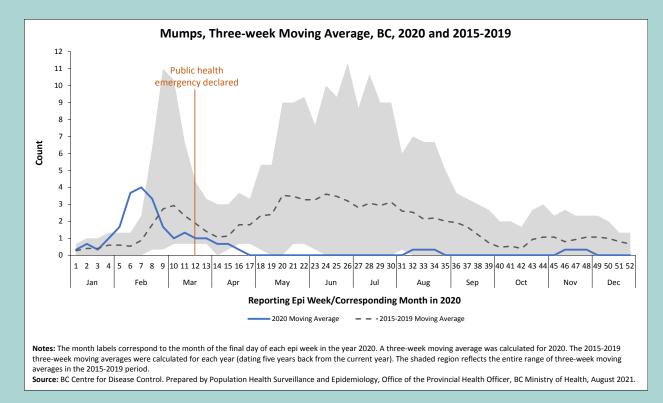




Figure 1 shows the percentage of patients who presented to the BC Children's Hospital Emergency Room due to influenza-like illness between August 25, 2019 (epi week 35) and December 19, 2020 (epi week 51), compared to previous years (see Appendix A for details about epidemiological [epi] weeks). A public health emergency was declared in response to COVID-19 on March 17, 2020. This date is marked on the chart for reference. A substantial reduction in the percentage of patients who visited the emergency department due to influenza-like illnesses occurred from the end of April to December 2020. While a decrease in April 2020 would generally be expected since it was the end of the flu season, a sustained decrease through the fall and into December 2020 was not expected — this shows that the percentage of visits was far below the historical average. In fact, as of May 1, 2021, there was no sign of influenza virus circulation throughout the 2020/21 fall-winter season when respiratory viruses usually circulate.<sup>b,17</sup>

For more information about influenza in BC, see: <u>http://www.bccdc.ca/health-professionals/data-reports/communicable-diseases/</u> influenza-surveillance-reports.



Figures 2 to 9 show the three-week moving average of selected respiratory communicable diseases in 2020, compared to the moving average in previous years. A public health emergency was declared in response to COVID-19 on March 17, 2020. This date is marked on all of the charts for reference.

Figure 2 shows the three-week moving average of mumps infections in BC in 2020 compared to the 2015–2019 moving average in the corresponding epi weeks. Mumps is a disease caused by the mumps virus.<sup>18</sup> Mumps is characterized by the acute onset of unilateral or bilateral, tender, self-limited swelling of the salivary glands. Mumps can sometimes cause complications, such as orchitis (inflammation of one or both testicles), encephalitis or meningitis (inflammation of the brain or infection of the lining of the brain), and temporary or permanent deafness.<sup>18</sup> The figure shows that the moving average of the number of reported mumps cases fell to zero beginning in April 2020 (epi week 17), and remained close to zero until the end of 2020. Of note, mumps is an uncommon infection in BC because of a highly effective vaccine and high rates of immunization.<sup>18</sup>

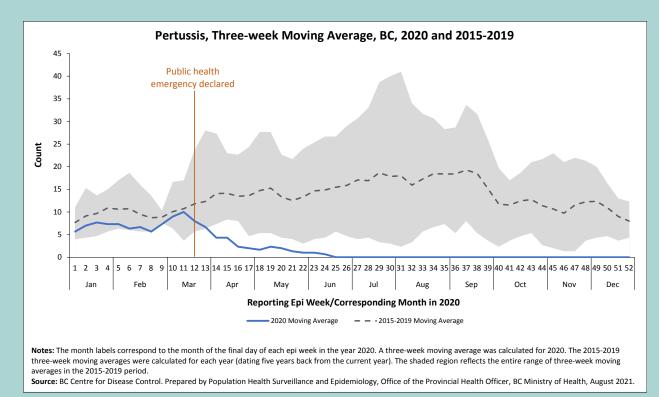
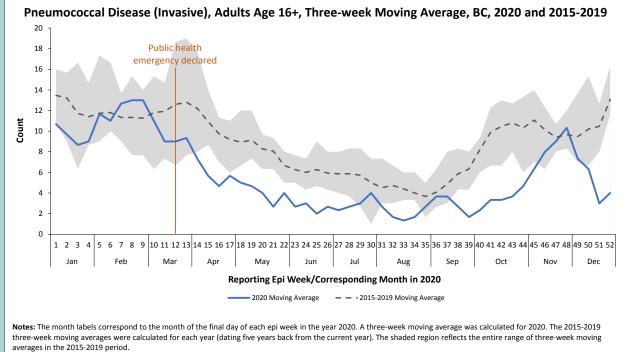




Figure 3 shows the three-week moving average of pertussis infections in BC in 2020 compared to the 2015–2019 moving average in the corresponding epi weeks. Pertussis is caused by a bacterium, *Bordetella pertussis*, found in the mouth, nose, and throat of a person who is infected.<sup>19</sup> Pertussis, also called whooping cough, can cause pneumonia, seizures, brain damage, and death.<sup>19</sup> Approximately one in 170 infants with pertussis will die from it.<sup>19</sup> In BC, pertussis is rare, as the vaccine for pertussis is part of BC's <u>childhood immunization schedule</u>. The figure shows that, beginning in March–April 2020 (epi week 14), the three-week moving average for the number of reported pertussis cases fell far below the 3-week moving average of the previous five years. The three-week moving average declined to zero beginning in June (epi week 25), and stayed at zero until the end of 2020.



Source: BC Centre for Disease Control. Prepared by Population Health Surveillance and Epidemiology, Office of the Provincial Health Officer, BC Ministry of Health, August 2021.

Figure 4 shows the three-week moving average of invasive pneumococcal infections<sup>20</sup> in BC residents over 16 years of age<sup>c</sup> in 2020, compared to the 2015–2019 moving average in the corresponding epi weeks. Invasive pneumococcal disease occurs when the bacterium *Streptococcus pneumoniae* infects a part of the body that is normally free of germs, such as blood (also known as bacteremia), bone, or joint fluid. It is a serious disease and typically requires care in a hospital. Non-invasive pneumococcal infections is part of BC's childhood immunization schedule. A pneumococcal vaccine is also available for free to seniors age 65 years and older.<sup>21</sup> The three-week moving average for the number of cases reported of invasive pneumococcal infections in adults over 16 years of age fell below the three-week moving average of the previous five years beginning in March 2020 (epi week 10). With the exception of November 22–28 (epi week 48), the three-week moving average remained below the three-week moving average of the previous five years until the end of 2020.<sup>d</sup>

<sup>&</sup>lt;sup>c</sup> Case counts for people under 16 years of age are low. BC Centre for Disease Control provides information for all age groups in its Reportable Diseases Data Dashboard: <u>http://www.bccdc.ca/health-professionals/data-reports/reportable-diseases-data-dashboard</u>.

<sup>&</sup>lt;sup>d</sup> The three-week moving average for weeks 47 and 49 in 2020 may appear to be higher than the three-week moving average for the same weeks in the previous five years. This is due to spatial constraints with visualizing this data. Values for weeks 47 and 49 in 2020 are not higher than the three-week moving average in the previous five years.

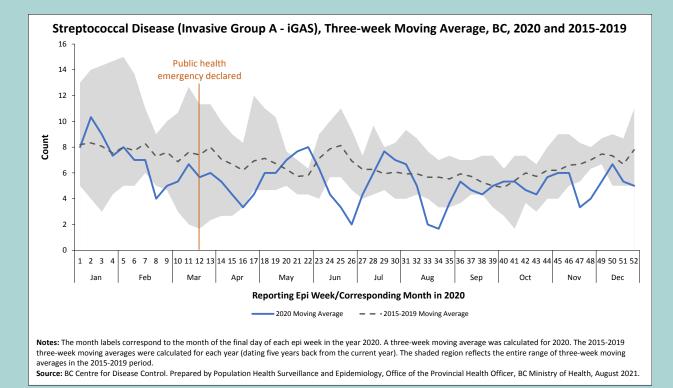



Figure 5 shows the three-week moving average of invasive group A streptococcal (iGAS) infections in BC in 2020 compared to the 2015–2019 moving average in the corresponding epi weeks. Like invasive pneumococcal disease, iGAS infection occurs when the bacterium, group A *Streptococcus,* infects a part of the body that is normally free of germs. It is a serious disease and typically requires care in a hospital. Non-invasive group A streptococcal infections (e.g., strep throat) are more frequent and are not reportable. The three-week moving average number of iGAS infections reported in 2020 was generally similar to the three-week moving average of the previous five-years, despite occasional fluctuations.

# Foodborne Diseases: *Campylobacter* Infection, *E-coli* Infection, *Giardia*, and *Shigella*

FIGURE 6

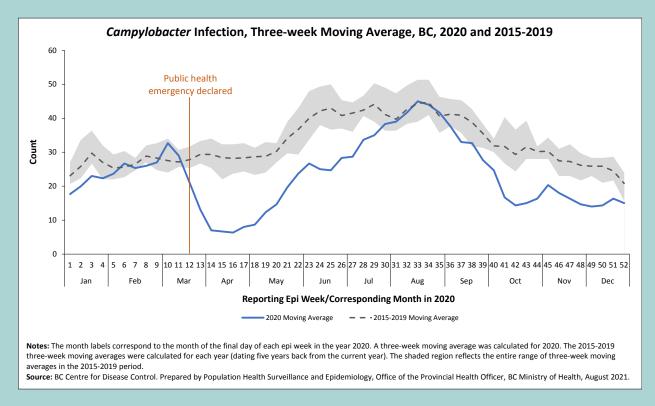
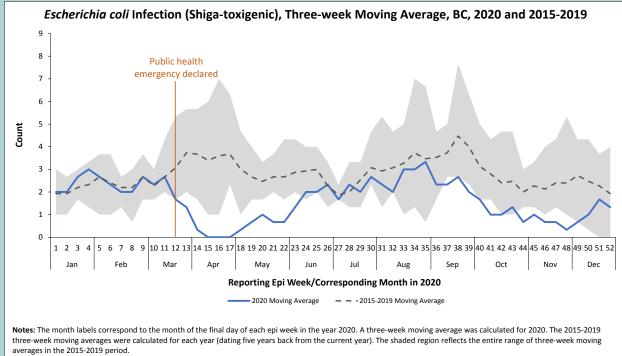




Figure 6 shows the three-week moving average of *Campylobacter* infections in BC in 2020 compared to the 2015–2019 moving average in the corresponding epi weeks. *Campylobacter* infection refers to an infection caused by bacteria in the *Campylobacter* genus.<sup>22</sup> When a person gets sick from this infection, it is called campylobacteriosis. Campylobacteriosis is a common cause of diarrhea in BC and in other parts of the world. In rare instances, arthritis and Guillain-Barré Syndrome (a neurological condition) can occur after campylobacteriosis.<sup>22</sup> The three-week moving average number of *Campylobacter* infections fell below the three-week moving average of the previous five years in March 2020 (epi week 12). The three-week moving average began to rise again beginning in epi week 17 (April 19–25). In August (epi weeks 31–35), the moving average of *Campylobacter* infections was the same as the three-week moving average observed in the 2015–2019 period.

11



Source: BC Centre for Disease Control. Prepared by Population Health Surveillance and Epidemiology, Office of the Provincial Health Officer, BC Ministry of Health, August 2021.

Figure 7 shows the three-week moving average of shiga-toxigenic *Escherichia coli* (*E. coli*) infections in BC in 2020 compared to the 2015-2019 moving average in the corresponding epi weeks. Shiga-toxigenic *E. coli* infection refers to an infection caused by *E. coli* bacteria that produces the shiga toxin (also known as enterohemorrhagic *E. coli* [EHEC] and verotoxigenic *E. coli* [VTEC]).<sup>23</sup> Shiga-toxigenic *E. coli* can cause much more severe disease than non-shiga-toxigenic *E. coli*, and symptoms can include severe diarrhea, serious complications, and death.<sup>23</sup> The 2020 three-week moving average number of shiga-toxigenic *E. coli* infections fell far below the 2015–2019 moving averages beginning in late March 2020 (epi week 12) and down to zero by mid-April (epi week 15). The moving average began to rise beginning in late April (epi week 17) until the end of August (epi week 35), after which the three-week moving average of shiga-toxigenic *E. coli* infections remained below the three-week moving average of the previous five years for the rest of 2020.

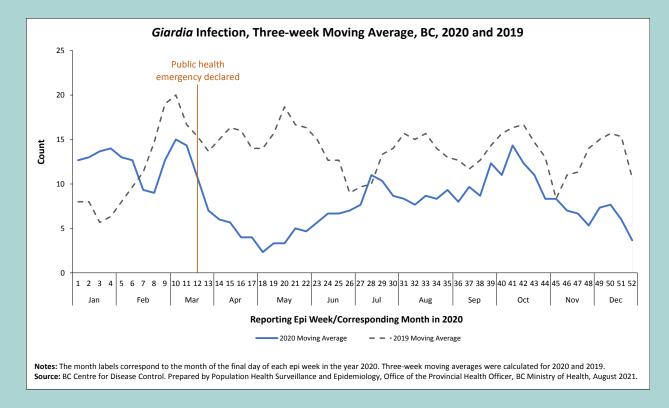



Figure 8 shows the three-week moving average of *Giardia* infections in BC in 2020 compared to the 2019 moving average in the corresponding epi weeks. *Giardia* infections are caused by an enteric parasite, *Giardia lamblia*, and the corresponding clinical illness is characterized by diarrhea, abdominal cramps, bloating, weight loss, or malabsorption.<sup>24</sup> Unlike gastrointestinal infections caused by *Campylobacter*, and shigatoxin-producing *E. coli*, both of which are usually short-lasting, *Giardia* infections can last for months. For this reason, the diagnosis date for *Giardia* infections can be days or months after exposure. The moving average for the number of *Giardia* infections fell below the 2019 moving average beginning in March 2020 (epi week 13). The three-week moving average began to rise beginning in May (epi week 19) up until July (epi week 28), when it again fell below the 2019 three-week moving average and generally stayed below it for the rest of the year.

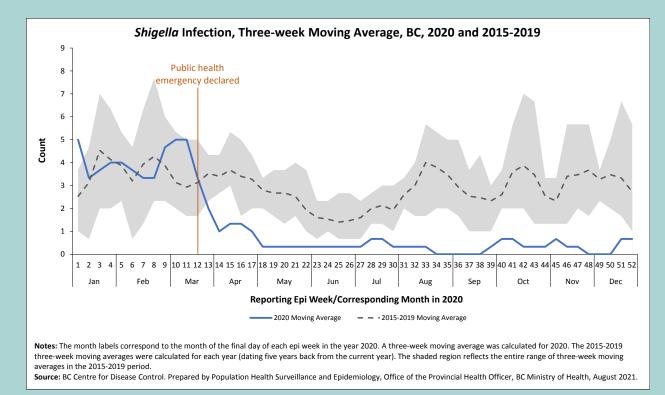



Figure 9 shows the three-week moving average of *Shigella* infections in BC in 2020 compared to the 2015–2019 moving average in the corresponding epi weeks. *Shigella* infections are caused by four species of *Shigella* bacteria: *Shigella sonnei*, *Shigella flexneri*, *Shigella boydii*, and *Shigella dysenteriae*.<sup>25</sup> People with a *Shigella* infection may experience diarrhea, fever, and stomach pain.<sup>25</sup> The figure shows that the three-week moving average for the number of *Shigella* infections fell far below the range of the moving average of the previous five years beginning in mid-March 2020 (epi week 12). The moving average remained below the moving average of the previous five years, and close to zero, from May (epi week 18) until the end of 2020.

## **Considerations for Further Action**

This section provides considerations for action based on the findings of this report. These are not formal recommendations, but rather ideas to consider when shaping recommendations and actions related to this topic.

The findings of this report suggest that COVID-19 public health measures may have decreased cases of other communicable diseases, though further analysis would be needed to explore other potential contributing factors before drawing conclusions about the role of COVID-19 public health measures in the observed decreases. The following are ideas to consider for the future:

- 1. Continued attentiveness to routine infection control practices (such as hand washing), and continued supports for staying home from work and school when ill, including public messaging encouraging these practices.
- 2. Continued monitoring of disease trends, and further examination of data to investigate the reasons for the case count declines, including changes in transmission dynamics as well as potential artefactual reasons (e.g., decreased or delayed testing and reporting).
- Continued immunizations for vaccine preventable diseases. While not directly evaluated in this report, immunizations have played a valuable role in reducing the burden of many communicable diseases.
- 4. Expanded support for community-led infection control practices among populations that experience a higher communicable disease burden (e.g., isolation supports and accommodations), and attention to the socioeconomic factors driving higher disease burden in certain populations.

## **Appendix A: Data methodology notes**

## 1. Charts provided by Population Health Surveillance and Epidemiology, Office of the Provincial Health Officer.

For questions contact: <u>HLTH.PHSE@gov.bc.ca</u>.

#### 2. Methodology

The analysis in Figure 1 was provided by the Influenza and Emerging Respiratory Pathogens Team at the BC Centre for Disease Control (BCCDC), based upon the BC Children's Hospital (BCCH) Admitting, Discharge, Transfer database (ADT). Data include records with a triage chief complaint of "flu," "influenza," or "fever/cough." The five-year historical average is based on the 2014-15 to 2018-19 seasons. The data table for this figure is downloadable from the main project website as an Excel workbook.

The data and analyses for Figures 2–9 were provided by Communicable Diseases and Immunization Service at the BCCDC. The data tables for these figures are downloadable from the main project website as an Excel workbook.

**Moving average:** In Figures 2–9, the three-week moving average of new cases is reported for each week. A moving average smooths out short-term (weekly, in this case) fluctuations by reporting the average over a longer period of time (3 weeks in this case). It is referred to as a "moving" average because the three-week window moves along with the reporting week. That is, the value reported for epi week 9 is the average of epi weeks 8, 9, and 10, while the value reported for epi week 10 is the average of epi weeks 9, 10, and 11.

**Epidemiological week (epi week):** Many disease measures in this report use the epi week as the unit of time. Using epi weeks allows for a standardized way to number weeks in a year and for comparison of weekly measures across years. An epi week begins on Sunday and ends on Saturday. The first epi week of each year ends on the first Saturday of January, as long as that week has at least four days. This means that the first epi week of some years begins in the previous year. For instance, epi week 1 of 2019 is December 30, 2018 to January 5, 2019. Most years have 52 epi weeks, but some years, such as 2020, have 53 epi weeks.

| Epi Week<br>Number | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
|--------------------|--------|--------|--------|--------|--------|--------|
| 1                  | Jan 10 | Jan 09 | Jan 07 | Jan 06 | Jan 05 | Jan 04 |
| 2                  | Jan 17 | Jan 16 | Jan 14 | Jan 13 | Jan 12 | Jan 11 |
| 3                  | Jan 24 | Jan 23 | Jan 21 | Jan 20 | Jan 19 | Jan 18 |
| 4                  | Jan 31 | Jan 30 | Jan 28 | Jan 27 | Jan 26 | Jan 25 |
| 5                  | Feb 07 | Feb 06 | Feb 04 | Feb 03 | Feb 02 | Feb 01 |
| 6                  | Feb 14 | Feb 13 | Feb 11 | Feb 10 | Feb 09 | Feb 08 |
| 7                  | Feb 21 | Feb 20 | Feb 18 | Feb 17 | Feb 16 | Feb 15 |
| 8                  | Feb 28 | Feb 27 | Feb 25 | Feb 24 | Feb 23 | Feb 22 |
| 9                  | Mar 07 | Mar 05 | Mar 04 | Mar 03 | Mar 02 | Feb 29 |
| 10                 | Mar 14 | Mar 12 | Mar 11 | Mar 10 | Mar 09 | Mar 07 |

The following table shows the final day of each epi week for the years 2015 through 2020.

| Epi Week<br>Number | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
|--------------------|--------|--------|--------|--------|--------|--------|
| 11                 | Mar 21 | Mar 19 | Mar 18 | Mar 17 | Mar 16 | Mar 14 |
| 12                 | Mar 28 | Mar 26 | Mar 25 | Mar 24 | Mar 23 | Mar 21 |
| 13                 | Apr 04 | Apr 02 | Apr 01 | Mar 31 | Mar 30 | Mar 28 |
| 14                 | Apr 11 | Apr 09 | Apr 08 | Apr 07 | Apr 06 | Apr 04 |
| 15                 | Apr 18 | Apr 16 | Apr 15 | Apr 14 | Apr 13 | Apr 11 |
| 16                 | Apr 25 | Apr 23 | Apr 22 | Apr 21 | Apr 20 | Apr 18 |
| 17                 | May 02 | Apr 30 | Apr 29 | Apr 28 | Apr 27 | Apr 25 |
| 18                 | May 09 | May 07 | May 06 | May 05 | May 04 | May 02 |
| 19                 | May 16 | May 14 | May 13 | May 12 | May 11 | May 09 |
| 20                 | May 23 | May 21 | May 20 | May 19 | May 18 | May 16 |
| 21                 | May 30 | May 28 | May 27 | May 26 | May 25 | May 23 |
| 22                 | Jun 06 | Jun 04 | Jun 03 | Jun 02 | Jun 01 | May 30 |
| 23                 | Jun 13 | Jun 11 | Jun 10 | Jun 09 | Jun 08 | Jun 06 |
| 24                 | Jun 20 | Jun 18 | Jun 17 | Jun 16 | Jun 15 | Jun 13 |
| 25                 | Jun 27 | Jun 25 | Jun 24 | Jun 23 | Jun 22 | Jun 20 |
| 26                 | Jul 04 | Jul 02 | Jul 01 | Jun 30 | Jun 29 | Jun 27 |
| 27                 | Jul 11 | Jul 09 | Jul 08 | Jul 07 | Jul 06 | Jul 04 |
| 28                 | Jul 18 | Jul 16 | Jul 15 | Jul 14 | Jul 13 | Jul 11 |
| 29                 | Jul 25 | Jul 23 | Jul 22 | Jul 21 | Jul 20 | Jul 18 |
| 30                 | Aug 01 | Jul 30 | Jul 29 | Jul 28 | Jul 27 | Jul 25 |
| 31                 | Aug 08 | Aug 06 | Aug 05 | Aug 04 | Aug 03 | Aug 01 |
| 32                 | Aug 15 | Aug 13 | Aug 12 | Aug 11 | Aug 10 | Aug 08 |
| 33                 | Aug 22 | Aug 20 | Aug 19 | Aug 18 | Aug 17 | Aug 15 |
| 34                 | Aug 29 | Aug 27 | Aug 26 | Aug 25 | Aug 24 | Aug 22 |
| 35                 | Sep 05 | Sep 03 | Sep 02 | Sep 01 | Aug 31 | Aug 29 |
| 36                 | Sep 12 | Sep 10 | Sep 09 | Sep 08 | Sep 07 | Sep 05 |
| 37                 | Sep 19 | Sep 17 | Sep 16 | Sep 15 | Sep 14 | Sep 12 |
| 38                 | Sep 26 | Sep 24 | Sep 23 | Sep 22 | Sep 21 | Sep 19 |
| 39                 | Oct 03 | Oct 01 | Sep 30 | Sep 29 | Sep 28 | Sep 26 |
| 40                 | Oct 10 | Oct 08 | Oct 07 | Oct 06 | Oct 05 | Oct 03 |
| 41                 | Oct 17 | Oct 15 | Oct 14 | Oct 13 | Oct 12 | Oct 10 |
| 42                 | Oct 24 | Oct 22 | Oct 21 | Oct 20 | Oct 19 | Oct 17 |
| 43                 | Oct 31 | Oct 29 | Oct 28 | Oct 27 | Oct 26 | Oct 24 |
| 44                 | Nov 07 | Nov 05 | Nov 04 | Nov 03 | Nov 02 | Oct 31 |
|                    |        |        |        |        |        |        |

| Epi Week<br>Number | 2015            | 2016   | 2017   | 2018   | 2019   | 2020            |
|--------------------|-----------------|--------|--------|--------|--------|-----------------|
| 45                 | Nov 14          | Nov 12 | Nov 11 | Nov 10 | Nov 09 | Nov 07          |
| 46                 | Nov 21          | Nov 19 | Nov 18 | Nov 17 | Nov 16 | Nov 14          |
| 47                 | Nov 28          | Nov 26 | Nov 25 | Nov 24 | Nov 23 | Nov 21          |
| 48                 | Dec 05          | Dec 03 | Dec 02 | Dec 01 | Nov 30 | Nov 28          |
| 49                 | Dec 12          | Dec 10 | Dec 09 | Dec 08 | Dec 07 | Dec 05          |
| 50                 | Dec 19          | Dec 17 | Dec 16 | Dec 15 | Dec 14 | Dec 12          |
| 51                 | Dec 26          | Dec 24 | Dec 23 | Dec 22 | Dec 21 | Dec 19          |
| 52                 | Jan 02,<br>2016 | Dec 31 | Dec 30 | Dec 29 | Dec 28 | Dec 26          |
| 53                 |                 |        |        |        |        | Jan 02,<br>2021 |

#### **References**

1 Government of British Columbia. COVID-19 (novel coronavirus) orders and notices [internet]. Victoria, BC: Government of British Columbia; 2022 [cited 2022 Aug 31]. Available from: https://www2.gov.bc.ca/gov/content/health/about-bc-s-health-care-system/office-of-the-provincial-health-officer/current-health-issues/covid-19-novel-coronavirus#orders.

2 Government of British Columbia. Province-wide restrictions [Internet]. Victoria, BC: Government of British Columbia; 2022 [cited 2022 Mar 31]. Available from: <u>https://</u> www2.gov.bc.ca/gov/content/covid-19/info/restrictions.

**3** WorkSafeBC. COVID-19 and communicable disease [Internet]. Victoria, BC: WorkSafeBC; [cited 2022 Mar 31]. Available from: <u>https://www.worksafebc.com/en/covid-19</u>.

4 WorkSafeBC. COVID-19 health and safety: designing effective barriers [Internet]. Victoria, BC: WorkSafeBC; 2022 Jan [cited 2022 Mar 31]. Available from: <u>https://www.worksafebc.</u> <u>com/en/resources/health-safety/information-sheets/covid-19-</u> <u>health-safety-designing-effective-barriers?lang=en</u>.

5 Wong J. Personal communication. BC Centre for Disease Control; 2021 Dec.

6 Northern Health. Communicable diseases [Internet]. Prince George, BC: Northern Health [cited 2022 Mar 31]. Available from: https://www.northernhealth.ca/services/ environmental-health/communicable-diseases#foodborneillness.

7 BC Centre for Disease Control. Communicable diseases [Internet]. Vancouver, BC: BC Centre for Disease Control [cited 2022 Mar 31]. Available from: http://www.bccdc.ca/healthprofessionals/data-reports/communicable-diseases.

8 BC Centre for Disease Control. Annual summaries of reportable diseases [Internet]. Vancouver, BC: BC Centre for Disease Control [cited 2022 Mar 31]. Available from: http://www.bccdc.ca/health-professionals/data-reports/communicable-diseases/annual-summaries-of-reportable-diseases.

**9** National Collaborating Centre for Determinants of Health. Canada communicable disease report: social determinants of health [Internet]. Antigonish, NS: National Collaborating Centre for Determinants of Health [cited 2022 Mar 31]. Available from: https://nccdh.ca/resources/entry/canada-communicabledisease-report-social-determinants-of-health.

**10** Moloughney BW. Social determinants of health: what can public health do to address inequities in infectious disease? Can Commun Dis Rep. 2016;42(Suppl 1):S14-7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868716/pdf/ CCDR-42-S1-14.pdf.

**11** Beech BM, Ford C, Thorpe Jr RJ, Bruce MA, Norris KC. Poverty, racism, and the public health crisis in America. Front Public Health. 2021:9. Available from: <u>https://www.frontiersin.</u> org/articles/10.3389/fpubh.2021.699049/full.

**12** Braveman P. Accumulating knowledge on the social determinants of health and infectious disease. Public Health Reports. 2011;126(Suppl 3):28-30. Available from: <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150126/</u>.

**13** Czeisler MÉ, Marynak K, Clarke KE, Salah Z, Shakya I, Thierry JM, et al. Delay or avoidance of medical care because of COVID-19-related concerns—United States, June 2020. MMWR Surveill Summ. 2020;69(36):1250-7. Available from: https://www.cdc.gov/mmwr/volumes/69/wr/mm6936a4.htm.

14 Jackson H. Doctors worry Canadians skipping appointments, creating backlog amid COVID-19. Global News. 2020 May 27 [cited 2022 Mar 31]. Available from: <u>https://</u> globalnews.ca/news/6990904/coronavirus-canadians-medicalappointments/.

**15** Canadian Institute for Health Information. COVID-19's impact on emergency departments [Internet]. Toronto, ON: Canadian Institute for Health Information; 2021 Dec 09 [cited 2022 Mar 31]. Available from: <u>https://www.cihi.ca/en/covid-19-resources/impact-of-covid-19-on-canadas-health-care-systems/how-covid-19-affected.</u>

**16** Narita M, Hatt G, Gardner Toren K, Vuong K, Pecha M, Jereb JA, et al. Delayed tuberculosis diagnoses during the coronavirus disease 2019 (COVID-19) pandemic in 2020— King County, Washington. Clinical Infectious Diseases. 2021;73(Supplement\_1):S74-6. Available from: <u>https://academic.oup.com/cid/article/73/Supplement\_1/S74/6270740</u>.

17 BC Centre for Disease Control. British Columbia (BC) influenza surveillance bulletin [Internet]. Vancouver, BC: BC Centre for Disease Control; 2021 [cited 2022 Mar 31]. Available from: http://www.bccdc.ca/resource-gallery/Documents/ Statistics%20and%20Research/Statistics%20and%20 Reports/Epid/Influenza%20and%20Respiratory/2020-2021/ Week\_17\_BC\_Influenza\_Surveillance\_Bulletin\_2020-21.pdf.

**18** BC Centre for Disease Control. Mumps [Internet]. Vancouver, BC: BC Centre for Disease Control [cited 2022 Mar 31]. Available from: <u>http://www.bccdc.ca/health-info/diseasesconditions/mumps</u>.

**19** BC Centre for Disease Control. Whooping cough/ pertussis [Internet]. Vancouver, BC: BC Centre for Disease Control [cited 2022 Mar 31]. Available from: <u>http://www.bccdc.</u> ca/health-info/diseases-conditions/whooping-cough-pertussis.

20 Government of Canada. Invasive pneumococcal disease [Internet]. Ottawa, ON: Government of Canada; 2021 [cited 2022 Mar 31]. Available from: <u>https://www.canada.ca/en/</u> <u>public-health/services/immunization/vaccine-preventable-</u> <u>diseases/invasive-pneumococcal-disease/health-professionals.</u> <u>html</u>.

**21** ImmunizeBC. Pneumococcal disease [Internet]. Vancouver, BC: ImmunizeBC; 2022 [cited 2022 Mar 31]. Available from: https://immunizebc.ca/pneumococcal.

22 BC Centre for Disease Control. Campylobacter [Internet]. Vancouver, BC: BC Centre for Disease Control [cited 2022 Mar 31]. Available from: <u>http://www.bccdc.ca/health-info/diseasesconditions/campylobacter</u>.

**23** BC Centre for Disease Control. E.coli infection [Internet]. Vancouver, BC: BC Centre for Disease Control [cited 2022 Mar 31]. Available from: <u>http://www.bccdc.ca/health-info/diseasesconditions/e-coli-infection</u>. **24** BC Centre for Disease Control. Giardiasis [Internet]. Vancouver, BC: BC Centre for Disease Control [cited 2022 Mar 31]. Available from: <u>http://www.bccdc.ca/health-info/diseasesconditions/giardiasis</u>.

25 Centers for Disease Control and Prevention. Shigella – Shigellosis [Internet]. Atlanta, GA: Centers for Disease Control and Prevention; 2020 [cited 2022 Mar 31]. Available from: https://www.cdc.gov/shigella/general-information.html.

Suggested Citation: Office of the Provincial Health Officer and BC Centre for Disease Control. Examining the Societal Consequences of the COVID-19 Pandemic: Selected Communicable Diseases other than COVID-19. Sep. 2022.

EXAMINING THE SOCIETAL CONSEQUENCES OF THE COVID-19 PANDEMIC



