Clinical Reference Group SBAR: Therapies for COVID-19

UPDATED: December 18th, 2020

The British Columbia COVID-19 Therapeutics Committee (CTC) meets bi-weekly to discuss the most current research on the use of therapies in the management of COVID-19.

Situation

SARS-CoV-2 (previously named 2019-nCoV), the virus that causes the clinical illness COVID-19, is a novel RNA virus belonging to the coronavirus family. With over seventy million cases worldwide, various treatments are being used clinically or undergoing evaluation. In preparation for in-patient treatment of COVID-19 at BC’s health care facilities, the COVID Therapeutics Committee has reviewed the evidence for these therapies and made recommendations concerning their use in consultation with various groups such as Infectious Diseases, Medical Microbiology, Intensive Care, Internal Medicine, Emergency Medicine, Hospitalists, Long Term Care and Pharmacy. The COVID Therapeutics Committee has also provided general treatment guidelines for anti-infective use in the setting of viral pneumonia for in-patients. As this is an evolving situation, we are making the necessary amendments to this SBAR along with up-to-date recommendations weekly, and as emerging information becomes available.

Background

Coronaviruses (CoV) are a large family of viruses that cause illness ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS-CoV-1). SARS-CoV-2, the virus responsible for the COVID-19 pandemic is a non-segmented, positive sense RNA virus most closely related to SARS-CoV-1, with 82% nucleotide identity. There have been over seventy million cases of COVID-19 to date, with a global case fatality rate of ranging between 2% to 10% depending on the country and criteria for testing.

Evidence for the role of different therapies for the prevention or treatment of COVID-19 is quickly emerging and represents a rapidly evolving area of research. Initially, the vast majority of information pertaining to COVID-19 therapeutics was extrapolated from MERS and SARS, but new, COVID-specific studies of various levels of impact, quality and relevance are now published each week. Since all agents have the possibility of associated harm, and pharmaceutical supply chains are fragile, it is essential that therapies are used in an evidence-based fashion. With a focus on knowledge translation, this document follows recommendations that all clinical studies need to be critically appraised for quality and generalizability, and a decision to use any treatment be made in the context of provincially harmonized best practices. In circumstances where practice-changing results become available, such data is carefully interpreted with particular attention to effect size, applicability, safety and practical issues of...
incorporating the evidence into practice that are specific to patients in British Columbia. The recommendations listed below have been written with careful consideration of these points.

Remdesivir is currently the only antiviral agent approved in Canada for treatment of COVID-19. Certain treatments have shown positive results and continue to be investigated in clinical trials. Concomitantly, several well-designed studies have shown various therapies to have no effect or pose safety concerns. Even though significant progress has been made to evaluate COVID-19 therapies through high-quality randomized controlled trials, the majority of evidence still comes from observational studies. Agents of particular initial interest include lopinavir/ritonavir (Kaletra®), an anti-retroviral used for treatment of HIV, remdesivir, an investigational antiviral, and hydroxychloroquine, an antimalarial drug with antiviral activity. Other agents also under investigation including immunomodulatory agents used to attenuate COVID-19-associated cytokine storm such as dexamethasone, tocilizumab, and baricitinib, as well as convalescent plasma. The most significant advancement in COVID-19 therapeutics is dexamethasone, with survival benefit, followed by remdesivir which appears to decrease time to recovery. As of December 16, 2020, the Cochrane COVID-19 Study Register lists over 4200 interventional trials. A large proportion of the discussion regarding potential treatment for COVID-19 within the medical community has been occurring through non-academic channels such as social media, blogs or the news.

A scientific literature search of potential non-vaccine therapies for COVID-19 and other coronaviruses (search strategy below) resulted in over hundreds of publications. The following pharmaceutical agents are discussed in detail below (see “Assessment”):

1. corticosteroids
2. remdesivir
3. lopinavir/ritonavir (Kaletra®)
4. chloroquine or hydroxychloroquine
5. oseltamivir
6. ribavirin and interferon
7. colchicine
8. ascorbic acid and vitamin D
9. biologics/small molecules (tocilizumab, sarilumab, anakinra, baricitinib)
10. convalescent plasma, intravenous immunoglobulin (IVIG) and monoclonal antibodies/antibody cocktails
11. antibiotics
12. SSRIs

Denotes that a clinical trial of named therapy is currently planned or underway in British Columbia. Links below for registered trials in Canada and British Columbia.

Canada: https://www.canada.ca/en/health-canada/services/drugs-health-products/covid19-clinical-trials/list-authorized-trials.html

British Columbia: https://bcahsn.ca/covid-19-response/inventory/

Articles commenting on safety of other agents, for example Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), Angiotensin Converting Enzyme (ACE) inhibitors and Angiotensin Receptor Blockers (ARBs), and Venous Thromboembolism (VTE) prophylaxis in the context of COVID-19 have also been published. These topics are also discussed in detail below (see “Assessment”).
Other investigational therapies that have been suggested by various medical and non-medical literature sources include ASC09, azvudine, baloxavir marboxil/favipiravir, camostat mesylate, darunavir/cobicistat, camrelizumab, ivermectin, niacin, thymosin, natural health products, and traditional Chinese medicines. Information on these therapies are limited due to lack of data, lack of availability, or both. Detailed assessment on these therapies will be provided when credible scientific literature becomes available.

It is recognized that there may be extenuating clinical circumstances where clinicians decide to use unproven therapies when clinical trials are unavailable. In those circumstances where unproven therapies are used, the WHO has provided a standardized case record form for data collection to ensure that there is contribution to scientific research and the clinical community.

Locally, in British Columbia, there is consensus between expert groups regarding treatment of COVID-19 with both unproven therapies and therapies shown to be efficacious in clinical trials through the BCCDC’s Clinical Reference Group, Provincial Antimicrobial Committee of Experts (PACE), and the clinical community. The agreement is that investigational treatments will not be used outside of approved randomized controlled trials (RCTs). This also applies to specific patients like those with immunocompromising conditions (e.g. solid organ transplant). Many BC Health Authorities have committed to enrolling in RCTs such as the CATCO study which aims to investigate the use of remdesivir in the treatment of COVID-19 in hospitalized patients. This RCT is led by Dr. Srinivas Murthy (Infectious Diseases and Critical Care) from BC Children’s Hospital and funded through the Canadian Institutes of Health Research. Several other trials are in the process of recruiting sites across Canada and are in various stages of ethics and operational approval. The BC Health Authorities are currently reviewing the local feasibility of these clinical studies on a regular basis.

Assessment

Corticosteroids

Recommendation:
Dexamethasone 6 mg IV/PO q24h for up to 10 days is strongly recommended (RECOVERY trial), unless higher doses are clinically indicated.** Hydrocortisone 50 mg IV q6h is recommended as an alternative (REMAP-CAP trial). If dexamethasone and hydrocortisone are not available, methylprednisolone 32 mg IV q24h or prednisone 40 mg PO daily are recommended.

On June 22, 2020, a preliminary report featuring the results of the Randomised Evaluation of COVID-19 Therapy (RECOVERY) trial was published following a press release. The peer-reviewed manuscript was published one month later in the *New England Journal of Medicine*. The publication reported the effects of dexamethasone on the outcomes of hospitalized patients with COVID-19; one arm of the pragmatic trial designed to evaluate various therapies simultaneously that can be adapted as the standard of care evolves. The dexamethasone arm of RECOVERY represents the largest trial to-date to not only produce a statistically and clinically significant result, but one that also impacts survival, all by using a well-known, inexpensive treatment. The finding of decreased mortality in the dexamethasone arm has already been touted to be immediately practice changing by the medical community and the media, representing a pivotal advancement in the treatment of COVID-19.

The methodology and results of the dexamethasone arm of RECOVERY have quickly become a topic of debate and critique. Unequivocally, the trial is regarded as high-quality, conducted with transparency and efficiency, and yielding meaningful, indisputable main results. However, any trial subject to a high degree of scrutiny will generate questions and concerns. The points below represent a brief summary and critical appraisal:

Study Details

RECOVERY Collaborative Group - Effect of Dexamethasone in Hospitalized Patients with COVID-19:
- Investigator-initiated, individually randomized, open-label trial of various therapies for COVID-19, compared to standard of care, of which dexamethasone comprised one arm
- Conducted at 176 hospitals in the UK
- 2104 patients were randomly allocated to receive dexamethasone 6mg PO or IV once daily for the duration of their hospital stay or 10 days, whichever was sooner, compared to 4321 patients concurrently allocated to usual care (1:2 randomization)
- 15% of patients required ventilation, 61% required oxygen and 24% were not receiving any respiratory support at randomization
- Average age was 66.1 years and 36% patients were female
- 56% of patients had at least one significant chronic comorbidity such as diabetes, heart disease or kidney disease
- 82% of patients had a positive laboratory test for SARS-CoV-2
- Mean duration of therapy was 6 days
- The primary outcome was 28-day mortality from randomization; secondary outcomes included duration of hospital stay and the need for (and duration of) ventilation
- Various subgroup analyses were pre-specified in the detailed protocol for disease severity, time
since onset of symptoms, sex and age; however, no p-value adjustment was made for account for multiple comparisons arising from secondary outcomes and subgroup analyses

- An intention-to-treat analysis was set
- In the overall study population, 22.9% of patients randomized to dexamethasone vs. 25.6% patients allocated usual care died within 28 days (adjusted RR 0.83; 95% CI 0.75 to 0.93; P<0.001). The effect increased based on the level of respiratory support received:
 - Invasive mechanical ventilation (29.3% vs. 41.4%, RR 0.64; 95% CI 0.51 to 0.81; p<0.001)
 - Oxygen without invasive mechanical ventilation (23.3% vs. 26.2%, RR 0.82; 95% CI 0.72 to 0.94; p=0.007)
 - Not receiving respiratory support (17.8% vs. 14%, RR 1.19; 95% CI 0.91 to 1.55; p=0.14)
- Patients receiving dexamethasone were more likely to be discharged at 28 days (67.2% vs. 63.5%; HR 1.1 95%CI 1.03-1.17), with a mean length of stay of 12 vs. 13 days, and less likely to progress to mechanical ventilation if not receiving it at baseline (25.6% vs. 27.3%) but the latter was not statistically significant
- Both primary and secondary outcomes were NOT statistically significant in the subgroup without respiratory support at randomization, and driven by patients requiring oxygen and/or mechanical ventilation
- A subgroup analysis based on symptom duration showed that patients with symptoms of <7 days had no statistically significant mortality benefit from dexamethasone; however that was also true for women and those over the age of 70 when subjected to sex and age-based subgroup analyses
- The study concluded that low-dose dexamethasone reduced 28-day mortality among patients hospitalized with COVID-19 receiving invasive mechanical ventilation or oxygen, but not among patients not receiving respiratory support

Study Strengths

There are many noteworthy accomplishments of this trial: follow up was completed in 95% of patients, and 95% of those randomized to dexamethasone received at least one dose. The primary and secondary outcomes are very likely attributable to the steroid as most patients were not receiving other therapies directed at COVID-19 such as lopinavir/ritonavir, hydroxychloroquine or IL-6 inhibitors. Some have stated that ideally, the trial would have been double-blind to minimize bias; however, successfully conducting a trial of this magnitude so quickly would have been hampered by the logistics and resources expanded by the administration of placebos. Regardless, the definitive outcomes such as death, mechanical ventilation or length of stay are less prone to subjective interpretation.

Generalizability to British Columbia Patients

The generalizability of the effect of dexamethasone to patients hospitalized in British Columbia is promising. According to epidemiological summaries, patients in BC hospitals during the peak of the pandemic appeared to be similar in baseline characteristics such as age and comorbidities. The standard of care in UK hospitals parallels that in Canada, minimizing the likelihood of unrecognized systemic confounders. On average, patients in the RECOVERY trial presented 6-13 days after symptom onset, depending on severity, which mirrors experiences in local practice.

One stand out aspect of the RECOVERY trial that has raised questions about its generalizability is the mortality rate in the control arm. A case review of patients admitted to the ICU in Vancouver reported a 15.8% mortality (albeit in-hospital, not 28-day), which is over 2.5 times lower than what was observed in
RECOVERY. If the reported relative risk ratio is applied, using dexamethasone in BC under similar circumstances would lead to a 5.5% absolute reduction in mortality, with a NNT closer to 20 instead of 8 for ICU patients. Regardless, a positive result on mortality in the field of critical care is unprecedented and welcomed, even if smaller than in the original trial. In addition, mortality in BC may rise should the system become overwhelmed, which was captured at some centres in the RECOVERY trial.

Study Weaknesses

The largest critique of this part of the RECOVERY trial stems from the nature of the statistical plan, particularly the lack of control for type I error (calling a result statistically significant when it is actually not), based on multiple comparisons generated by the analyses of subgroups and secondary outcomes.

While it was prespecified in the protocol that no type I error correction would be performed because it would require knowledge of the effect and sample size, the various analyses limited to pairwise univariate comparisons pose a concern of falsely inflating p-values. After all, the more analyses are done, the more likely there will be a statistically significant result and most non-adaptive trials are required to adjust for multiplicity. RECOVERY got a pass mainly because of the technical difficulty of an a priori adjustment without knowing how many participants will need to be enrolled, adding arms over time and uneven number of patients in various groups. The primary outcome’s p value of <0.001 would likely not change much with adjustment, but this serves as a reminder to only cautiously apply evidence from subgroups and secondary outcomes, even if the p-values are <0.05.

This advice, however, is tempting to ignore when the effect size was profoundly different in patients requiring oxygen or mechanical ventilation vs. those who did not. While the results were reported as not statistically significant, the subgroup not requiring oxygen experienced a 19% higher rate of death when given dexamethasone, forcing clinicians to carefully consider who should not receive dexamethasone. With many details absent from the manuscript, including timing of randomization with respect to presentation and placement of oxygen, clinical indications for oxygen support, and granular safety endpoints, this decision is difficult to make.

A more careful look at one analysis of the mortality results for the least sick patients reveals a more disconcerting detail - the finding of increased mortality for those not requiring oxygen given dexamethasone is indeed statistically significant if the result is not adjusted for age (RR 1.31 (1.00-1.71); p=0.05), which was the result of the first analyses performed (age-unadjusted Cox regression). The age adjustment was later justified based on a 1.1 year difference between groups even though the statistical plan stated that no statistical tests would be performed for differences in baseline characteristics. Large trials can find small, often clinically unimportant differences in baseline characteristics between groups. If randomization was carried out correctly and chance bias minimized with a large sample size, one may argue that this adjustment was not necessary in RECOVERY. This leads the reader to the possibility that the age adjustment was done based on optics rather than methodological convention and the subsequent analyses using different methods (e.g. One-step vs. Cox regression) were simply looking for the most favourable result. Decreased mortality found in some subgroups that is directly opposed by a simultaneous increase in another is harder to explain, and heterogeneity decreases the impact and validity of the study findings. Even with a sound pathophysiological explanation as to why steroids would be more effective in more severe disease, these findings put into question whether patients not requiring oxygen should receive the recommendation against steroids, or be simply left out. We have chosen to do the latter, taking our own advice to very cautiously interpret subgroup analyses in RECOVERY.
Practical Considerations

Overall the study procedures in the RECOVERY trial are described well enough to inform a confident, immediate change in practice for patients requiring oxygen support or mechanical ventilation. Dexamethasone should be initiated at the time of presentation to hospital for those with confirmed or presumed COVID-19 meeting admission criteria. It should be given at a dose of 6mg daily, with oral and IV formulations freely interchangeable, and continued until discharge or for 10 days, whichever is first. Details regarding circumstances that preclude steroid use were not listed in the exclusion criteria of RECOVERY; however it is reasonable to withhold them when serious immediate contraindications are present. Whether this dexamethasone regimen should be abandoned to another steroid protocol, for example hydrocortisone for refractory septic shock, should be left to the individual treating clinician as patients with a definitive alternative indication for steroids were excluded from the study. Based on the results of this trial, dexamethasone supplies are already on allocation world-wide; whether the same results could be achieved with an alternative steroid is not clear. Methylprednisolone at a dose of 30mg IV daily, or prednisone 40mg PO daily would provide the equivalent glucocorticoid/anti-inflammatory effect but yield more mineralocorticoid activity responsible for fluid overload and hypernatremia. Whether this is clinically important in COVID-19 is unknown. The half-life of dexamethasone is 36-54 hours which is about double that of methylprednisolone. In the event of a dexamethasone shortage, slightly longer courses of alternative steroids may be considered. Use of corticosteroids and immunomodulatory medications increases the risk of opportunistic infection reactivation/exacerbation - Strongyloidiasis, tuberculosis, and others. Overall the risk of in the context of COVID-19 and with the current dosing strategy is unknown. If risk factors present for Strongyloides (e.g. born in an endemic area, spent 6 months or more in an endemic area; see CATMAT Advisory Committee Statement for full risk assessment guideline), discussion with ID about testing and potential prophylactic Ivermectin should be considered.

METCOVID study

Shortly after the publication of RECOVERY, the results of a smaller randomized controlled trial from Brazil were released. At first glance, it appeared that MetaCOVID, a RCT of methylprednisolone in hospitalized patients with COVID-19, contradicted RECOVERY by showing no difference in mortality. However, the critical appraisal below puts the results of this trial into context.

Jeronimo et al. Methylprednisolone as Adjunctive Therapy for Patients Hospitalized With COVID-19 (Metcovid): A Randomised, Double-Blind, Phase IIb, Placebo-Controlled Trial.
- Investigator-led parallel double-blind, placebo-controlled, randomized trial
- Conducted at a single tertiary center in Manaus, Brazil
- 194 patients with confirmed or suspected COVID-19 presenting to hospital were randomized to receive methylprednisolone 0.5mg/kg twice daily for 5 days, or discharge, whichever was sooner, and 199 were randomized to placebo (1:1 randomization)
 - Patients 18 years and older had a SpO2 of 94% or less on room air or be receiving oxygen (47.5%) or mechanical ventilation (35.4%)
 - Average age was 55, and 34.7% were women
 - Most patients had a co-morbidity including hypertension (48.4%), diabetes (29%) or alcohol use disorder (27.6%).
Patients were randomized on average, 13 days from symptom onset.

- Most patents received 5 days of treatment and methylprednisolone was stopped while still in hospital.
- The primary outcome was 28-day mortality. Various other outcomes were measured, including mortality at 7 and 14 days, length of stay and development of complications (e.g. BOOP).
- The results report a sub-group analysis of those mechanically ventilated, but a sub-group analysis based on age, as discussed in the study results, was not depicted.
- Patients were analyzed in an intention-to-treat fashion
- Overall, for the primary outcome, the 28-day mortality was no different between groups (38.2% vs. 37.1%).
- In a sub-group analysis, those aged >60 experienced a lower mortality with treatment (46.6% vs. 61.9%). Patients over 60 represented 40% of the study population
- Other sub-group analyses were NS, including those requiring mechanical ventilation and those with higher CRPs or SOFA scores.

While the results of MetCOVID put the positive results of RECOVERY into question, the studies have several key differences, one being the sample size and power calculation. MetCOVID’s sample was predetermined and based on a 50% mortality and a 50% absolute mortality reduction, an ARR that is rarely achieved with any treatment. As a comparison, the ARR in recovery was approximately 15%. These practicalities mean that the sample size was far too small in MetaCOVID.

Another key difference was the regimen studied. Methylprednisolone has higher mineralocorticoid activity than dexamethasone, leading to more fluid retention and hyperglycemia, as evidenced in MetaCOVID. The regimen in RECOVER was also twice as long where most patients received steroids until discharge. Duration of symptoms prior to randomization was also much longer in MetaCOVID (13 days), which may be significant in light of RECOVERY’s finding that those presenting with more than a week of symptoms do not tend to benefit from steroids.

The generalizability of RECOVERY is higher than MetCOVID when considering patients in British Columbia as the UK health care system bears a closer resemblance to BC than Manaus. The mortality rate in MetaCOVID is multiple-fold what was observed in BC at the peak of the pandemic and the majority of patients were nearly 20 years longer than what has been observed in BC hospitals. Thus, the results of MetaCOVID do not discredit those in RECOVERY, but rather highlight the importance of the regimen used (dexamethasone preferred), duration of treatment and those who are likely to benefit (those with a shorter duration of symptoms at presentation).

In early September 2020, several publications were simultaneously released in the Journal of the American Medical Association, further characterizing the role of corticosteroids in the treatment of COVID-19. Due to the results of RECOVERY, various RCTs evaluating steroids were stopped; these trials were subsequently combined in a meta-analysis with the following results. Details of the individual trials are expanded further in the critical appraisal below.
WHO Meta-Analysis

- Prospective meta-analysis that pooled data from 7 ongoing RCTs that evaluated the efficacy of steroids in critically ill patients, including the RECOVERY trial.
- While 16 trials were potentially eligible for the prospective meta-analysis, several declined to participate, enrolled no patients or had to placebo. The 7 RCTs that met final eligibility criteria were included.
- RCTs were conducted in 12 countries and data collection ended June 9, 2020.
- 678 patients were randomized to receive systemic corticosteroids and compared vs. 1025 patients randomized to placebo.
 - Patients received dexamethasone, hydrocortisone and methylprednisolone at various doses and durations. The lowest steroid dose was dexamethasone 6mg/day (RECOVERY) and the highest was dexamethasone 20mg/day (DEXA-COVID and CoDEX).
 - Duration of treatment ranged from 5 to 10 days.
- The pre-specified primary outcome was 28-day mortality, calculated using a fixed-effects model, with adverse effects reported as a secondary outcome.
- Overall, 222/678 deaths in the corticosteroid arms, compared to 425/1025 deaths in the placebo arms (OR 0.66 95% CI 0.53-0.82, p<0.001).
- Due to the large sample size and proportion of critically ill patients, 57% of the weight of the meta-analysis came from the RECOVERY trial, followed by 18.7% from CoDEX.
- No other trial besides recovery reached statistically significant results alone, likely due to insufficient power. Four of those 6 trials had an OR of less than one, favouring steroid treatment.
- Pre-specified sub-group analyses were also performed and were favourable for most sub-groups, including those receiving mechanical ventilation, receiving supplemental oxygen and regardless of age or symptom onset.
- A comparison of the association of high dose vs. low dose steroids and mortality was imprecise and therefore inconclusive.
- Adverse effects were not statistically significantly associated with steroids in any trial or overall.

Overall, this meta-analysis provides a useful overview and synthesis of evidence supporting the use of steroids in critically ill patients with COVID-19. While largely driven by RECOVERY, the addition of the other 6 RCTs generating similar results is reassuring. The prospective nature of the meta-analysis is also beneficial in determining a pre-defined outcome and minimizing bias. The meta-analysis also provides additional reassurance that steroids should be given to all critically ill patients with COVID-19 regardless of age and symptom onset, something that was unclear in RECOVERY. Unfortunately, the precise agent, dose and duration could not be assessed by the results, but rather confirms that the benefit is likely a class effect.

CAPE-COVID: Effect of Hydrocortisone on 21-Day Mortality or Respiratory Support Among Critically Ill Patients With COVID-19

- Design:
○ Multicenter randomized double-blind sequential trial conducted in France, with interim analyses planned every 50 patients. Trial was embedded in larger CAPECOD trial evaluating hydrocortisone low dose vs placebo in ICU patients on 28 day mortality.

● Inclusion
 ○ Age >18, PCR+ and 1 of 4 of: MV with PEEP>4, P:F<300 with high flow>50%, Reservoir mask and P:F<300, Pneumonia severity index (PSI) >150

● Intervention
 ○ Continuous intravenous infusion of hydrocortisone at an initial dose of 200 mg/d or its placebo (saline). Treatment was continued at 200 mg/d until day 7 and then decreased to 100 mg/d for 4 days and 50 mg/d for 3 days, for a total of 14 days. If the patient’s respiratory and general status had sufficiently improved by day 4, a short treatment regimen was used (200 mg/d for 4 days, followed by 100 mg/d for 2 days and then 50 mg/d for the next 2 days, for a total of 8 days).

● Baseline
 ○ Women 22%, Age 63-66, duration of symptoms 9-10d, P:F 130, mechanical vent 80%, Hi-Flow 12%, concomitant therapy 58-64% (most Hydroxychloroquine and azithro)

● Outcomes
 ○ Treatment failure (death or persistent dependency on mechanical ventilation or high-flow oxygen therapy) on day 21 occurred in 32 of 76 patients (42.1%) in the hydrocortisone group compared with 37 of 73 (50.7%) in the placebo group (difference of proportions, −8.6% [95.48% CI, −24.9% to 7.7%]; P = .29).
 ○ Of the 16 patients in each group who did not require invasive mechanical ventilation at baseline, 8 (50%) in the hydrocortisone group and 12 (75%) in the placebo group required subsequent intubation.
 ○ There was no significant between-group difference in rates of prone positioning; Too few patients were treated with ECMO or inhaled nitric oxide to allow statistical testing. Daily evolution of PaO2:FIO2 ratio during the first week and on days 14 and 21 did not significantly differ
 ○ Post-hoc at day 21: still vented same, more discharged from ICU in HC group, proportion of death same.

● Limitations
 ○ Trial terminated early by DMSB after 149pts after release of RECOVERY thereby likely underpowered.
 ○ Embedded in CAPE-COD trial
 ○ No data on secondary infections

● Interpretation
 ○ Low dose hydrocortisone compared with placebo did not reduce treatment failure at 21 days, but trial was likely underpowered.
 ○ The study was halted early due to the release of the RECOVERY data (see above). The DSMB felt that there was no longer equipoise in relation to the benefits of corticosteroids in COVID-19 disease, therefore the trial stopped after 149 patients of the
planned maximum of 290. This trial is therefore likely underpowered. Additionally, the failure rate was initially estimated to be 30% in the control group, with substantial uncertainty at the beginning of the epidemic. The observed rate of the primary outcome in the placebo group was much higher than expected (50.7% cases vs 30.0%). Other limitations include that this trial was embedded within another trial looking at steroids and CAP. Finally, diagnosis of nosocomial infections was not adjudicated; however, the double-blind nature of the trial suggests that the comparison of the rate of secondary infections between the 2 groups may still be valid. The observed difference in the post hoc outcome of proportion of deaths at day 21 was not statistically significant (p=0.06); however, the finding was consistent with the reduced mortality observed with dexamethasone in the subgroup of mechanically ventilated patients from RECOVERY. Additionally, the meta-analysis by the WHO which included this study showed a mortality benefit with corticosteroids; showing an overall 34% (95%CI 18-47) relative reduction in mortality among critically ill patients with COVID-19 when treated with systemic glucocorticoids compared to either usual care or placebo.

REMAP-CAP Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19

The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial

- **Design**
 - Ongoing adaptive platform open label in 121 sites in 8 countries

- **Inclusion**
 - Age >17 with presumed or confirmed COVID and admitted to ICU for respiratory support (invasive or non-invasive with flow >30L/min and FIO>40%) or cardiovascular support (pressors or inotropes)

- **Exclusion**
 - Death imminent, hypersensitivity to hydrocortisone, systemic steroids needed or >36hrs since ICU admission

- **Intervention**
 - 1:1:1 - hydrocortisone, 50 mg, every 6 hours for 7 days; intravenous hydrocortisone, 50 mg, every 6 hours while in shock for up to 28 days (stopped when shock resolved or vasopressors stopped); or no hydrocortisone

- **Baseline**
 - The mean age 59.5 to 60.4 years; male (range, 70.6%-71.5%); body mass index ranged between 29.7 and 30.9; and mechanical ventilation 50.0% and 63.5%

- **Outcomes**
 - 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (n = 137), shock-dependent (n = 146), and no (n = 101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. Hydrocortisone given 1-1.2 days after admission; 50-64% on mech ventilation
 - The primary endpoint was organ support–free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were
assigned –1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%).

- The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock dependent hydrocortisone compared with no hydrocortisone

- Limitations
 - Open label design
 - 15% of the no steroids group received steroids
 - Trial stopped early due to release of RECOVERY

- Interpretation
 - Compared with no steroids, fixed dose or stress dose hydrocortisone had a 93% and 80% probability of superiority with regards to odds of improved organ free support at 21 days, however trial underpowered.

CoDEX (Tomazini et al) Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19. The CoDEX Randomized Clinical Trial

- Multicenter, randomized, open-label, clinical trial conducted in 41 ICUs in Brazil
- Patients were included if they were hospitalized with COVID-19 and developed moderate to severe ARDS, according to the Berlin definition
- 151 were randomized to receive 20mg of dexamethasone IV daily x 5 days followed by 10mg daily x 5 days, and compared to 148 patients who received standard of care
- The primary outcome was ventilator-free days during the first 28 days
 - 6.6 ventilator free days was observed in those who received dexamethasone vs. 4 days in the standard of care group (difference of 2.26 days, p=0.04)
- The secondary outcomes included all-cause mortality at 28 days, clinical status of patients at day 15 using a 6-point ordinal scale (ranging from 1, not hospitalized to 6, death), ICU-free days during the first 28 days, mechanical ventilation duration at 28 days, and Sequential Organ Failure Assessment (SOFA) scores
 - There was no significant difference in the pre-specified secondary outcomes of all-cause mortality at 28 days (56.3% vs. 61.5%, p=0.31), ICU-free days during the first 28 days (2.1 vs. 2, p=0.78), mechanical ventilation duration at 28 days (12.5 vs 13.9, p=0.18), or the 6-point ordinal scale at 15 days (5 vs 5).
- Adverse events were not different between groups (21.9% vs 29.1% experienced secondary infections, 31.1% vs 28.3% needed insulin for glucose control, and 3.3% vs 6.1% experienced other serious adverse events.
- The planned sample size of 350 patients was not reached due to the publication of RECOVERY

Despite being stopped early, the study provides additional support for the use of steroids in patients who develop ARDS from COVID-19, further increasing the generalizability for the overarching steroid
recommendation. Based on the numerically lower rate of death with an ARR of 5.5%, enrolling 350 patients would not have been sufficiently powered to reach statistical significance either, and RECOVERY continues to lead the way in terms of power.

DEXA-COVID 19

DEXA-COVID 19 is a multicentre, open-label randomized controlled trial involving adult patients with ARDS caused by confirmed SARS-CoV-2 infection admitted to a network of ICUs across Spain. Adult patients with positive reverse-transcriptase polymerase chain reaction on respiratory tract sample, intubated and mechanically ventilated, and have acute onset of moderate-severe ARDS were enrolled. Eligible patients were randomized in a 1:1 ratio to receive dexamethasone plus standard intensive care or standard intensive care alone. Patients assigned to receive dexamethasone received 20 mg intravenously once daily from day 1 to 5, then 10 mg intravenously once daily from day 6 to 10. This dose was selected based on the authors’ previous study of dexamethasone in ARDS. Other therapies such as antivirals, interferon and chloroquine were permitted at the discretion of the attending physician. The primary outcome for this study is all-cause mortality at 60 days from randomization. The secondary outcome is the number of ventilator free days at 28 days. Other outcomes include: ICU mortality, 28 day mortality, duration of mechanical ventilation, length of hospital stay, time to death, viral RNA detection, and safety outcomes. The trial aimed to enroll 200 patients, however, as of September 2, 2020, the trial has been suspended due to lack of enrollment.

DEXA-COVID 19 has not yet been published and preliminary results have been obtained from a meta-analysis on the use of corticosteroids in COVID-19 published by the REACT group. As of June 9, 2020, a total of 19 patients were enrolled, of which, 7 received dexamethasone. Median age was similar 62 (dexamethasone) vs 60, use of vasoactive agents was slightly higher in the control arm (42.9% vs 58.3%), and use of antivirals was similar (86% vs 83%). All patients received hydroxychloroquine. For 28 day mortality, 2 patients in both arms reached the outcome (OR 2 95%CI 0.21-18.69). Three patients in the dexamethasone arm vs 11 patients in the control experienced serious adverse events.

Given the limited recruitment in this study and insufficient details about the enrolled patients, will continue to await publication of this study.

COVID-STEROID

COVID-STEROID is a multicentre, blinded, placebo controlled randomized controlled trial of adult patients with documented COVID-19 receiving at least 10 L/min of oxygen or mechanical ventilation in Denmark. Eligible patients were randomized to receive hydrocortisone 200 mg IV via continuous infusion over 24 hours for 7 days versus normal saline continuous infusion. Both intervention and placebo control were given in addition to standard care. Primary outcome was days alive without life support. Secondary outcomes include: all-cause mortality at day 28, days alive without life support at day 90, all-cause mortality at day 90, serious adverse reactions, days alive and out of hospital at day 90, all-cause mortality at 1 year, and health-related quality of life at 1 year. The trial aimed to randomize 1000 patients, however, as of September 7, 2020, the trial is not recruiting patients.
COVID-STEROID also has not yet been published and preliminary results have been obtained from the meta-analysis on the use of corticosteroids in COVID-19 published by the REACT group. As of June 9, 2020, a total of 29 patients were enrolled, of which, 15 received hydrocortisone. Median age was similar 57 years (hydrocortisone) vs 62 years, 46.7% (hydrocortisone) vs 57.1% were mechanically ventilated at randomization, use of vasoactive agents was similar 33.3% (hydrocortisone) vs 35.7%. Remdesivir was used in 4 placebo control arm patients, and convalescent plasma in 2 placebo control arm patients versus none in the intervention arm. For 28 day mortality, six patients in the hydrocortisone arm versus 2 patients in the control arm reached the outcome (OR 4 95%CI 0.65-24.66). One patient receiving hydrocortisone versus none in the control arm experienced serious adverse events.

Given the limited recruitment in this study and insufficient details about the enrolled patients, will continue to await publication of this study.

Older Studies

Prior to the publication of the dexamethasone arm of RECOVERY, the medical community was divided on its recommendation for the use of corticosteroids in patients with COVID-19, and their recommendations have not all been updated. Most recommendations focused on the small proportion of COVID-19 patients with acute respiratory distress syndrome (ARDS), as this is where evidence for steroids overlaps. The Surviving Sepsis Campaign Guidelines for COVID-19, a joint initiative of the Society of Critical Care Medicine and the European Society of Intensive Care Medicine, issued a weak recommendation to suggest the use of corticosteroids in the sickest patients with COVID-19 and ARDS in March 2020. In May, a Canadian Guideline was published echoing this sentiment. The World Health Organization, Canadian Clinical Care Society, and The Australian and New Zealand Intensive Care Society (ANZICS) all recommend against the routine use of corticosteroids in COVID-19, although this is likely to change. While evidence in concerning this therapeutic area has been largely overshadowed by the RECOVERY trial, the publications that historically informed practice are worth mentioning.

COVID-19 and ARDS

A single observational study by Wu at al, 2020 comprises the only evidence that directly addresses the question of steroid use in COVID-19 and ARDS. While generally considered as being of low quality due to the study design and lack of adjustment for confounding factors, the study was published in early March in JAMA and is still widely referenced, being the only applicable publication on this topic. The study looked at risk factors of 201 patients with COVID 19 in Wuhan, China, of who 84 (41.8%) developed ARDS. The study reported that patients with ARDS were more likely to be older, have coagulopathy, certain clinical symptoms and various comorbidities. The study performed innumerable bivariate analyses, one of which was of the relationship between methylprednisolone and death, stratified by the presence of ARDS. Among the patients with ARDS, of those who received methylprednisolone treatment, 23 of 50 (46.0%) died, while of those who did not receive methylprednisolone treatment, 21 of 34 (61.8%) died. This analysis was not conducted for those without ARDS. The study concluded that there was a large, statistically significant association between corticosteroid and lower mortality (HR 0.38 95% CI 0.20 to 0.72) in those 84 patients. However, due to the significant methodological issues,
including confounding, this result gained little credibility among the medical community and did not change practice.

Various other studies and meta-analyses provide indirect evidence for the use of corticosteroids in pneumonia caused by bacteria and viruses such as influenza and coronaviruses MERS and SARS that are sometimes applies to COVID 19. This includes a very recent Canadian meta-analysis in July 2020 by Ye et al., which informed the rationale for the above-mentioned COVID-19 Canadian Guideline titled “Treatment of patients with nonsevere and severe coronavirus disease 2019: an evidence-based guideline”. The Ye et al. meta-analysis, concluded that based on evidence from 851 patients with non-COVID 19 ARDS in 7 RCTs, the use of corticosteroids resulted in a reduction in mortality of 17.3% (95% CI −27.8% to −4.3%). However, the meta-analysis stated that the evidence was very poor quality, and subsequently the guideline citing it referred to the recommendation to give steroids for patients with COVID-19 and ARDS as a “weak recommendation of low quality evidence”. One reassuring finding of the Ye et al. publication was that corticosteroid use in this population did not lead to an increased risk of gastrointestinal bleeding and neuromuscular weakness, and only a very modest increase in serum glucose (~8%).

The authors of the Surviving Sepsis Campaign Guidelines also came to similar conclusions regarding steroids and non-COVID 19 ARDS:

“We updated a recent Cochrane review (Lewis 2019) and identified an additional RCT (Villar 2020) dealing with ARDS. Overall, we included 7 RCTs enrolling 851 patients with ARDS. The use of corticosteroids reduced mortality (RR 0.75, 95% CI 0.59 to 0.95) and duration of mechanical ventilation (MD −4.93 days, 95% CI -7.81 to - 2.06). However, these trials were not focused on viral ARDS, which limits the generalizability of their results to COVID-19 patients. In addition, we reviewed observational studies on corticosteroid use in viral ARDS, and identified 4 cohort studies. Although the point estimate showed increased mortality, the CI included substantial harm and benefit (OR 1.40, 95% CI 0.76 to 2.57).”

COVID-19 without ARDS

Besides the RECOVERY trial, data for the use of corticosteroids for patients with COVID-19 without ARDS is extremely limited. One published but not peer-reviewed observational report of 26 patients with severe COVID-19 stated that the use of methylprednisolone 1-2mg/kg/day for 5-7 days was associated with a shorter duration of oxygen use (8.2 days vs. 13.5 days; p<0.0001), along with improved radiographic findings. However, this study has significant risk of bias and lacks details that would allow for an appropriate critical appraisal (Wang 2020).

The Surviving Sepsis Campaign Guidelines also comment on the use of corticosteroids in viral pneumonia, and stated that the effects were not clear in patients with non-COVID 19 coronavirus:

“There are many published observational studies on the use of steroids in viral pneumonias (i.e. influenza virus, coronaviruses, and others), but they are prone to confounding, as sicker patients usually receive corticosteroids. We updated a recent Cochrane review on the use of corticosteroids in influenza
and searched for studies on other coronaviruses. We included a total of 15 cohort studies on influenza and 10 on coronaviruses. Our meta-analysis of adjusted ORs showed an association between corticosteroid use and increased mortality (OR 2.76, 95% CI 2.06 to 3.69), but the effect in the patients with other coronaviruses was unclear (OR 0.83, 95% CI 0.32 to 2.17).”

COVID 19 Viral Shedding

Two observational studies have shown that corticosteroids may increase viral shedding in COVID 19.

One study from China by Xu et al. looked at 113 patients, 64 of whom received steroids. Of those 64, most patients (n=46) were found to exhibit positive viral PCR at ≥15 days, whereas only 15 patients cleared the virus in the first two weeks, a statistically significant difference. In the abstract, the study concluded that steroids are associated with a longer viral shedding time. However, multivariable analyses of factors associated with the duration of SARS-CoV-2 virus RNA detection depicted in Table 2 of the publication showed that receipt of corticosteroids was not statistically significantly linked to viral shedding (OR 1.38 95% CI 0.52-3.65, p=0.519).

Another Chinese study designed to look at risk factors associated with viral shedding by Yan et al. analyzed 120 patients hospitalized with COVID 19. The primary outcome of the study was to assess the impact of lopinavir/ritonavir on viral shedding; however, other variables were also studied though a multivariate logistic regression analysis. The results, which were not peer-reviewed, reported that the mean duration of viral shedding was 23 days, and that corticosteroid treatment of a dose equivalent of 25mg or more of methylprednisolone per day was NOT associated with prolonged viral shedding. Corticosteroids were given to 45% of patients and their receipt had no impact on the presence of the virus in two consecutive tests of cure (OR=0.80 95% CI 0.38-1.70; p=0.57).

It is biologically explainable that those with prolonged and severe illness have longer viral shedding; however, those who are severely ill are more likely to receive steroids in non-randomized trials. Analyses of steroids as an independent variable in SARS-CoV-2 RNA detection are lacking, and the clinical implications are not well understood. In viral non-COVID pneumonia (e.g. MERS) in the ICU, several observational studies showed an increase in viral shedding with corticosteroid use (Arabi 2018, Hui 2018, Lee 2004), potentially indicating viral replication. However, significant methodological issues exist in these studies; for example, the OR for the association was statistically significant in some, but not all statistical analyses. Furthermore, the clinical consequences of increased viral shedding is uncertain and the generalizability to COVID 19 is not clear.
Remdesivir

Recommendation:

Remdesivir has not demonstrated benefit in survival, progression to ventilation or length of hospital stay and remains uncertain with respect to shortening time to recovery by 5 days. The World Health Organization (WHO) has issued a conditional recommendation against the use of remdesivir in hospitalized COVID-19 patients. Further evaluation in approved clinical trials is strongly encouraged. If remdesivir is used outside of clinical trials, full disclosure of risks and benefits with consideration of patient values and preferences are necessary, as it is not considered standard of care. Furthermore, it should be restricted to hospitalized patients requiring supplemental oxygen but not requiring non-invasive or invasive mechanical ventilation.

Remdesivir is an investigational nucleotide analog with broad-spectrum antiviral activity. It was initially developed and evaluated for the treatment of Ebola. It inhibits RNA-dependent RNA polymerase, which is 96% identical in sequence between MERS, SARS and COVID-19. Remdesivir has demonstrated in vitro and in vivo activity in animal models against the viral pathogens MERS and SARS (Sheahan 2020).

In response to the positive preliminary results of the NIAID clinical trial, on May 1, 2020, the FDA issued an Emergency Use Authorization of remdesivir. This is the third time the FDA has issued such a release for a pharmacologic therapy.

On May 22, 2020, preliminary results from the NIAID RCT were published demonstrating a faster time to recovery in patients receiving remdesivir compared to those who received placebo (11 vs 15 days p<0.001). May 27, 2020 WHO interim guidance on clinical management of COVID-19 continued to recommend remdesivir only in the context of a clinical trial. The final publication of the ACTT-1 study continued to demonstrate a faster time to clinical recovery. Subgroup analysis showed that this benefit was only seen in the population requiring low flow supplemental oxygen and was not demonstrated in either those not requiring supplemental oxygen or those requiring high flow supplemental oxygen, non-invasive and invasive mechanical ventilation or ECMO. Secondary analysis of mortality benefit was not found in ACTT-1. On October 15, 2020, the preprint of the SOLIDARITY trial was released. In this study of over 5000 participants randomized to remdesivir versus open label standard of care, there was no benefit for in-hospital mortality or progression to mechanical ventilation.

Remdesivir received conditional approval by Health Canada for the treatment of COVID-19 on July 28, 2020. Remdesivir is being allocated by Health Canada to individual provinces based on the local epidemiology and case burden. It is at the discretion of individual provinces to allocate the medication. It was previously available as compassionate use via Health Canada’s Special Access Program for individual case-by-case applications. Given the lack of demonstrated survival benefit and the significant cost of this novel therapy, an analysis of cost-effectiveness of Remdesivir is underway by CADTH.

BC COVID-19 Therapeutics Committee continues to recommend against the use of remdesivir outside of approved clinical trials. Remdesivir may be beneficial in reducing the time to clinical recovery as shown in the ACTT-1 trial however no mortality benefit has been demonstrated in this study or the much larger Solidarity trial. Due to the potential for benefit in certain subgroups and remaining equipoise, the CTC continues to recommend enrollment in clinical trials of remdesivir.
The Remdesivir Review and Advisory Working Group (RRAWG) is comprised of representatives from multiple provincial committees including the BC Pharmacy Emergency Operation Center (EOC), the BC CTC, the Critical Care Services Executive Committee, the Provincial Antimicrobial Clinical Expert Group and the Provincial Healthcare Ethics Advisory Team. Given the recent surge in COVID-19 cases and rising hospitalizations along with allocation of Health Canada procured supply of Remdesivir, on November 10, 2020, the decision from this group was that Remdesivir may be considered for the treatment of COVID-19 in hospitalized patients requiring supplemental oxygen but not requiring non-invasive mechanical ventilation, invasive mechanical ventilation or ECMO. Remdesivir should not be prescribed if CrCl <30 mL/min or ALT >5xULN. If prescribed, the recommended dosing of Remdesivir is 200 mg IV load on day one followed by 100 mg IV daily for 4 more days or until hospital discharge, whichever comes first. In patients still requiring supplemental oxygen on day 5 of therapy, remdesivir may be continued for up to a maximum of 10 days.

Human Data

Pan 10-15-20
- Pre-print of Solidarity trial; Open-label, randomized trial of remdesivir, hydroxychloroquine, lopinavir, interferon-beta-1a compared to standard of care. Inclusion of meta-analysis of available trials assessing remdesivir.
- Analysis of remdesivir (n=2743) vs standard of care (n=2708) demonstrated rate ratio for 28-day in-hospital mortality of 0.95 (95% CI 0.81-1.11).
- Initiation of ventilation was no different between remdesivir and standard of care arms (295 vs 284).
- Meta-analysis of four available trials found death rate ratio of 0.91 (95% CI 0.79-1.05) for remdesivir vs control. There is a trend to favorable outcome with remdesivir in the lower risk, non-ventilated groups (RR 0.8, 95% CI 0.63-1.01).

Beigel 10-08-2020
- Final report of the ACTT-1 trial; Randomized, double-blinded, placebo-controlled trial of remdesivir versus placebo, see below (n=1062).
- Patients treated with remdesivir had a shorter time to recovery, defined as reaching categorization 1-3 on the ordinal scale, compared to placebo (10 days vs 15 days p<0.001)
- Several subgroup analyses were performed. The greatest benefit in time to recovery was demonstrated in those with ordinal scale 5 (on supplemental oxygen, not requiring high-flow or ventilation). No benefit was seen in those not requiring supplemental oxygen or in those on high-flow oxygen or requiring mechanical ventilation at baseline. Benefit was demonstrated in those randomized within the first 10 days from symptom onset but not in those randomized beyond 10 days from symptom onset.
- Mortality was a secondary outcome. There was a trend to improved day 29 mortality in the remdesivir treatment arm (HR 0.73, 95% CI 0.52-1.03). Again the greatest benefit was seen in the subgroup with ordinal scale 5 at baseline (HR 0.3, 95% CI 0.14-0.64).

Spinner 08-21-2020
- Randomized, open label study comparing standard of care to 5 vs 10 days of remdesivir.
- 584 patients with moderate COVID infection included.
● Moderate COVID defined as confirmed infiltrates on chest X-ray but not requiring supplemental oxygen with room air oxygen saturations of >94%.
● Primary outcome was day 11 status on 7 point ordinal scale. The 5 day remdesivir arm had an OR of 1.65 for improved day 11 status compared to standard of care. As per authors, this finding is of uncertain clinical importance. There was no difference in all cause mortality between all three groups.
● There were a greater number of adverse events in the 10 day remdesivir arm compared to standard of care.
● The standard of care group was more likely to receive other candidate therapeutics including hydroxychloroquine, azithromycin and lopinavir/ritonavir.

Olender 07-24-2020
● Comparative analysis of interim data from two separate cohorts, one cohort from a prospective trial of patients all receiving remdesivir and one retrospective cohort of patients not receiving remdesivir.
● Primary endpoint recovery at day 14 defined as improvement on ordinal scale.
● More patients in the remdesivir cohort reached the primary endpoint compared to the retrospective cohort. The secondary endpoint of day 14 mortality was reached in 7.6% of the remdesivir treated cohort and 12.5% of the non-remdesivir treated cohort.
● This paper continues to demonstrate trends in remdesivir benefit but the methods used make the utility of this current analysis limited and do not provide any greater information beyond ACTT-1. The retrospective cohort was collected as much as 1 month before the remdesivir cohort and the critical care management of COVID-19 patients likely evolved in this time period.

Goldman 05-27-2020
● Randomized, open label trial of 397 patients, comparing 5 versus 10 days of remdesivir in hospitalized patients with COVID-19 from March 6 to 26, 2020.
● Conducted in United States, Italy, Spain, Germany, Hong Kong, Singapore, South Korea and Taiwan.
● Included hospitalized patients greater than 12 years old, with confirmed SARS-CoV-2 infection, with an SpO2 below 94% on room air or requiring supplemental oxygen and radiographic evidence of pulmonary infiltrates. Patients were excluded if they were receiving mechanical ventilation, ECMO, had an ALT or AST >5 x ULN, CrCl <50 ml per minute or were receiving other candidate antiviral therapy.
● At baseline after randomization, the patients in the 10 day treatment arm were sicker with greater supplemental oxygen needs.
● Primary endpoint was clinical status on day 14 assessed on a 7-point ordinal scale with 65% of patients in the 5 day arm showing clinical improvement compared to 54% in the 10 day arm. Despite randomization, given the baseline differences in the arms, adjustment for baseline clinical status were performed and showed no difference in clinical status between the two arms (p=0.14).
● Mortality was numerically lower in the 5-day arm compared to the 10-day arm (8% vs 11%).
● Although limited by the lack of a placebo controlled arm, this study demonstrates that there was no significant difference in clinical status at day 14 in patients treated with 5 versus 10 days of remdesivir. This suggests that if adopted into clinical use, 5 days may be the preferred treatment taking into account resource allocation implications.

Beigel 05-22-2020
● Randomized, double-blinded, placebo-controlled trial of remdesivir versus placebo

● Conducted in USA, Denmark, Germany, Greece, Spain, United Kingdom, South Korea, Singapore, Mexico, Japan.

● Included hospitalized adult patients with lab confirmed COVID-19 and at least one of the following: pulmonary infiltrates on radiographic imaging, SpO2 below 94% on room air, requiring supplemental oxygen, or on mechanical ventilation or ECMO; excluded those with ALT/AST 5 times above ULN, GFR below 30, or pregnant/breastfeeding. Patients were allowed to receive additional treatments for COVID-19 per individual institutional policies.

● Randomization was stratified by center and disease severity

● Primary outcome was changed to time to recovery defined as the first day a patient was either discharged from hospital or hospitalized for only infection control purposes.

● Trial was stopped early on April 27, 2020 after DSMB review and participants were unblinded and placebo patients could receive remdesivir if clinically indicated.

● 1063 patients were randomized in a 1:1 fashion to remdesivir or placebo. At trial cessation, 391 remdesivir arm patients and 340 placebo arm patients had completed day 29 follow up, recovered or died. 301 patients had not recovered or completed day 29 follow up at analysis.

● Median time to recovery was significantly shorter for the remdesivir arm compared to placebo (11 vs 15 days p<0.001) and hazard ratio for mortality trended to lower for remdesivir HR 0.7 (CI 0.47-1.04) however day 28 mortality was not available. In a subgroup analysis when stratified by baseline oxygen requirement, there was no difference between remdesivir and placebo in either the mild/moderate patients not requiring oxygen at baseline or the critical patients requiring high flow oxygen or mechanical ventilation. Benefit appeared to be derived by the cohort requiring oxygen but not yet critically ill.

Wang 2020-04-29

● randomized, double-blinded, placebo-controlled trial of 237 patients in 10 hospital sites in Hubei, China from February 6 to March 12, 2020

● included participants age over 18, confirmed SARS-CoV-2, positive chest imaging for pneumonia, oxygen saturations below 94% on room air or PaO2 to FiO2 ratio below 300, and within 12 days of symptom onset; excluded participants who were pregnant, cirrhosis, ALT or AST above 5 times upper limit of normal, GFR below 30 or on dialysis

● randomized 2:1 to remdesivir 200 mg IV x 1 day, then 100 mg IV daily x 9 days versus placebo

● terminated early due to inability to recruit with control of local outbreak in Wuhan

● underpowered based on the original sample size calculation of 453

● at baseline, more patients in the remdesivir group had hypertension, diabetes, and coronary artery disease; other baseline characteristics were similar; admission NEWS 2 score was 4 to 5; median age 65 and about 60% male

● median time from symptom onset to study treatment was 11 vs 10 days

● during the trial, the following concomitant medications were permitted in each group: interferon IV (29% vs 38%), lopinavir/ritonavir (28% vs 29%), antibiotics (90% vs 94%), corticosteroids (65% vs 68%)

● primary endpoint was time to clinical improvement within 28 days defined as a change in 6-point ordinal scale by 2 points or discharge from hospital; there was no difference in primary endpoint (21 vs 23 days, HR 1.23 [95%CI 0.87 to 1.75])

● numerically faster improvement in primary outcome with remdesivir in subgroup with symptom onset less than 10 days (18 vs 23 days, HR 1.52 [95%CI 0.95 to 2.43])

● no significant differences in mortality at 28-days (14% vs 13%, difference 1.1% [95%CI -8.1 to 10.3])
● there were no consistent effects on viral load between groups from day 1 to 28
● serious adverse events were less common in remdesivir (18%) vs placebo (26%); common adverse events (>10%) that occurred more in remdesivir group included thrombocytopenia and hyperbilirubinemia
● overall, clinical conclusions from this RCT are limited due to its premature termination, relatively prolonged duration from symptom onset to treatment, and concomitant anti-viral medication use; there were no apparent differences in time to clinical improvement, mortality, or rate of viral clearance between remdesivir and placebo in this study

Grein 2020-04-20

● Case series of 53 patients who received remdesivir as part of Gilead’s compassionate access program in the US, Europe or Japan.
● Patients were eligible to receive a 7-day course of remdesivir if they had oxygen saturation of 94% or less while on room air or receiving oxygen support. 64% of patients were on invasive mechanical ventilation at drug initiation. The approval process and selection of patients for the compassionate use program was not described.
● Patients received remdesivir, on average, 12 days after illness onset.
● At a median follow-up of 18 days, 68% of patients were reported to have improvement in their oxygen support needs; 57% of ventilated patients were extubated.
● Mortality at time of publication was 13% and authors suggest that this is less than what has been reported in other cohorts of hospitalized patients.
● Due to potential bias in patient selection, errors in statistical analysis, lack of control group, absence of pre-specified outcomes, and authorship attributed to the drug’s manufacturer, this analysis, along with the publishing journal (NEJM) has received numerous criticisms within the medical community.

Holshue 2020-01-31

● Single case report of a patient who improved rapidly with 7 days of treatment and no adverse effects. Viral PCR was negative for the virus after one day of therapy. Since then, a case series of patients receiving remdesivir as part of the compassionate use program has also been published.
Lopinavir/Ritonavir (Kaletra®)

Recommendation:
Lopinavir/ritonavir is not recommended for treatment of COVID-19. Lopinavir/ritonavir is not recommended for prophylaxis of COVID-19 outside of approved randomized-controlled trials.

Lopinavir/ritonavir is a combination of antiviral agents used in treatment of HIV. Lopinavir is the effective agent that inhibits the protease activity of coronavirus; ritonavir increases the half-life of lopinavir. Lopinavir/ritonavir has the advantage that it is available in Canada, and has an established toxicity profile. In BC, the agent is non-formulary and mostly obtained through the Centre for Excellence for the treatment of HIV. At this time, it is listed as a “No Stock Available” item from wholesale due to countrywide allocation, but it could potentially be obtained through other channels. Ribavirin may be synergistic when added to lopinavir/ritonavir, especially in other coronaviruses. However, most clinical data for COVID-19 does not support the routine addition of ribavirin.

Human Data

Cao 2020: Randomized Controlled Trial of 199 patients with COVID-19 treated in Wubei, China at the peak of the outbreak
- 100 patients were randomized to receive lopinavir/ritonavir for 14 days and 99 to receive standard of care
- Patients included were those who had difficulty maintaining O2 saturations of >94% on room air; many patients were severely ill and received treatment late as evidenced by the nearly 25% mortality.
- The primary outcome was clinical improvement by 2 points measured by a 7-point ordinal scale, or discharge from hospital, whichever came first.
- The trial did not find a difference between the two groups in the primary outcome. Viral shedding was no different between groups. Mortality was lower in the treatment arm but was not statistically significant.
- 13.8% of patients in the treatment arm had to stop the drug because of adverse effects such as gastrointestinal intolerance and laboratory abnormalities; but serious adverse events were more common in the control arm.
- An interim analysis showed that the trial was underpowered, however, enrollment was suspended as remdesivir became available.

Li 2020: ELACOI partially blinded randomized controlled trial of 86 patients with mild to moderate clinical status with confirmed SARS-CoV2 PCR in Guangzhou, China. Currently only available as non-peer reviewed pre-print.
- 34 patients were randomized to receive lopinavir/ritonavir 400/100 mg PO BID for 7-14 days, 35 patients to arbidol 200 mg PO TID for 7-14 days, and 17 patients received no antiviral therapy. Therapy was discontinued after 7 days if patients had 2 pharyngeal swabs negative for SARS CoV2 separated by 24 hours, on hospital discharge or had intolerable side effects from antiviral therapy. Median age 49, no significant differences in baseline characteristics, although numerically higher number of patients received corticosteroids in the lopinavir/ritonavir arm.
- Patients, physicians and radiologists that reviewed data and radiologic images were blinded to treatment allocation but open-label to clinicians that recruited patients and research staff.
Primary outcome—time of positive-negative conversion of SARS-CoV2 nucleic acid from treatment initiation to day 21. Nine days with lopinavir/ritonavir vs 9.1 days with arbidol vs 9.3 days with standard care.

35.3% of lopinavir/ritonavir patients experienced adverse effects (primarily GI), one patient required discontinuation of therapy. Eight patients on lopinavir vs 3 patients on arbidol vs 2 patients on standard care progressed to severe/critical clinical status.

Planned enrollment of 125 patients but did not achieve this due to low numbers of new COVID-19 patients

RECOVERY 05/10/2020: Open label RCT in UK evaluating various therapies for COVID-19 in hospitalized patients with clinically suspected or laboratory confirmed SARS-CoV-2 infection

1616 patients randomized to receive Lpv/r 400/100 mg PO q12h x 10 days or discharge (if sooner) vs 3424 patients received usual care. Median duration of Lpv/r treatment was 5 days.

Independent data monitoring committee reviewed unblinded data and found no beneficial effect. Enrollment was therefore closed on June 29, 2020.

No significant difference seen in 28 day mortality; 23% (Lpv/r) vs 22% (standard care), RR 1.03 95%CI 0.91-1.17, p=0.6. No differences seen in risk of progression to mechanical ventilation or length of hospital stay

No differences seen in rate of cardiac arrhythmias between groups. One report of serious adverse effect attributed to Lpv/r: elevated alanine aminotransferase that resolved after stopping treatment.

WHO SOLIDARITY 15/10/2020: Multi-country open label adaptive RCT evaluating various therapies in adult patients hospitalized with COVID-19 (currently available only in non-peer reviewed form)

Of 11266 eligible patients, 1411 patients were randomized to receive Lpv/r 400/100 mg PO q12h for 14 days. Due to use of tablet formulation, patients who were ventilated and unable to swallow did not receive drug.

Relative risk for in-hospital mortality with Lpv/r: 1.00 (95% CI 0.79-1.25, p=0.97). Pre-planned analyses of patients not ventilated on study entry, did not demonstrate a protective effect of Lpv/r.

Lopinavir arm was discontinued July 4, 2020 for futility.

Young 2020 Cohort study describing 16 COVID-19 patients in Singapore.

Among 6 patients with hypoxemia, five were treated with lopinavir/ritonavir (200 mg/100 mg BID, which is half of the usual dose of lopinavir).

Among the 5 patients, 2 patients deteriorated and had persistent nasopharyngeal virus carriage.

The authors of the study suggested that perhaps ribavirin should have been used in addition

Kim 2020 & Lim 2020: Lopinavir/ritonavir has been used to treat two individual patients with COVID-19 in South Korea

Park 2019: Retrospective cohort study on post-exposure prophylaxis against MERS

This is a retrospective cohort study involving 22 patients with high-risk exposure to a single MERS patient). As a control group, four hospitals with outbreaks of MERS were selected. Post-exposure prophylaxis consisted of a combination of lopinavir/ritonavir (400 mg / 100 mg BID for 11-13 days) plus ribavirin (2000 mg loading dose, then 1200 mg q8hr for four days, then 600 mg q8hr for 6-8 days).
● MERS infections did not occur in anyone treated with post-exposure prophylaxis. However, the manner in which the control group was selected likely biased the study in favor of showing a benefit of post-exposure prophylaxis.
● Post-exposure therapy was generally well tolerated, although most patients reported some side effects (most commonly nausea, diarrhea, stomatitis, or fever). Laboratory evaluation shows frequent occurrence of anemia (45%), leukopenia (40%), and hyperbilirubinemia (100%).

Chu 2004: Open-label before/after study on SARS
● 41 patients treated with lopinavir/ritonavir plus ribavirin were compared to 111 historical control patients treated with ribavirin alone. Poor clinical outcomes (ARDS or death) were lower in the treatment group (2.4% vs. 29%). These differences persisted in multivariable models, which attempted to correct for baseline imbalances between the groups.
● Use of lopinavir/ritonavir use correlated with a dramatic reduction in viral load.
● All patients received concomitant ribavirin.
● One patient discontinued the medications due to doubling of liver enzymes

Chan 2003: Retrospective matched multicenter cohort study on SARS
● 75 patients treated with lopinavir/ritonavir were compared with matched controls.
● Up-front treatment with lopinavir/ritonavir combined with ribavirin correlated with reduced mortality (2.3% versus 16%). However, rescue therapy with lopinavir/ritonavir (often without concomitant ribavirin) showed no effect.
● Study reported that the drug was “well tolerated” and side effects were minimal.

Animal Data

Chan 2015: Lopinavir/ritonavir was effective against MERS-CoV in a primate animal model

In-vitro Data
In-vitro activity against SARS
● Lopinavir showed in vitro antiviral activity against SARS at concentration of 4 mcg/mL. However, when combined with ribavirin, lopinavir appears considerably more effective (with an inhibitory concentration of 1 mcg/mL) (**Chu 2004**).
● For reference, the peak and trough serum concentrations of lopinavir are 10 and 5.5 mcg/mL

There are no reported in vitro studies of COVID-19.

Drug interactions with protease-inhibitors are well known and limit their use. Patients receiving interacting therapies such as apixaban, rivaroxaban, dabigatran, cyclosporine, tacrolimus, methadone, and amiodarone may not be candidates for treatment with lopinavir/ritonavir.
Chloroquine and Hydroxychloroquine

Recommendation:
Chloroquine or hydroxychloroquine (with or without azithromycin) is not recommended for treatment or prophylaxis of COVID-19.

Chloroquine and hydroxychloroquine are generally used for treatment of malaria, amebiasis and certain inflammatory conditions like rheumatoid arthritis. It has anti-viral activity *in vitro*, but no established clinical efficacy in treatment of viral disease. Chloroquine and hydroxychloroquine appear to work via multiple mechanisms including glycosylation of the ACE2 receptor thereby decreasing SARS-CoV-2’s ability to enter cells, impairment of acidification of endosomes interfering with virus trafficking within cells, and immunomodulatory effects which may attenuate cytokine storm reactions in severe disease. However, it should be noted that immunomodulatory effects may be harmful in viral disease.

Unfortunately, due to the over-exaggeration of benefits of hydroxychloroquine for treatment of COVID-19 in early observational studies, there has been early widespread adoption of its off-label use. This resulted in drug supply chain issues both in Canada and worldwide and placed undue strain on patients with established indications for hydroxychloroquine such as rheumatoid arthritis. Additionally, one death and one hospitalization occurred in Arizona after a couple took a single dose of veterinary-grade chloroquine for prophylaxis. Numerous overdoses have also been reported in Africa, where both drugs are used for malaria prophylaxis.

When used under medical supervision, hydroxychloroquine is well tolerated based on experience in patients with rheumatoid arthritis. Common side effects include gastrointestinal intolerance. Less common side effects include hypoglycemia and skin reactions. Other reported toxicities that are rarely encountered clinically include QT prolongation, bone marrow suppression, and hepatotoxicity. Retinal toxicities are a known adverse effect of hydroxychloroquine but typically described after years of prolonged use.

Human Data
Hydroxychloroquine has been studied in a variety of patient settings to test its efficacy for both prevention and treatment of COVID-19. Consistently across all studies, hydroxychloroquine has not demonstrated clinically significant benefits. Specifically, published RCTs that have tested hydroxychloroquine in pre-exposure prophylaxis, post-exposure prophylaxis, infected non-hospitalized patients not requiring oxygen, or hospitalized patients requiring oxygen have not demonstrated efficacy of hydroxychloroquine over either standard of care or placebo.

On June 5, 2020, the United Kingdom’s NHS sponsored RECOVERY trial authors published a press release announcing that in hospitalized patients with COVID-19, hydroxychloroquine did not improve mortality. They evaluated 1542 patients who received hydroxychloroquine versus 3132 patients who received standard of care alone. There were no differences in 28-day mortality (25.7% vs 23.5%, HR 1.11 (95%CI 0.98 to 1.26), p = 0.10). There were also no differences in hospital length of stay or other clinical outcomes. Due to these preliminary findings, the RECOVERY trial has stopped recruiting patients into its hydroxychloroquine arm.
Subsequently, on June 17, 2020 and June 20, 2020, the WHO’s [SOLIDARITY trial authors](https://www.who.int) and the NIH’s [ORCHID study authors](https://www.ncbi.nlm.nih.gov) respectively, have released similar announcements for their hydroxychloroquine treatment arms for hospitalized patients with COVID-19. Specifically, the SOLIDARITY study group stopped its hydroxychloroquine arm due to news release from the UK RECOVERY trial and from its own data including the French [DISCOVERY](https://www.clinicaltrials.gov) trial. The ORCHID study group announced that after randomizing 470 patients (out of a total planned 500 patients) in their placebo-controlled study, preliminary results showed no additional benefit using hydroxychloroquine for treatment of COVID-19 in hospitalized patients.

There has been an extraordinary amount of observational data published to investigate associations between use of hydroxychloroquine and clinical outcomes. It is important to note that observational studies should be viewed as hypothesis-generating and that causality is rarely demonstrated. To date, no well-performed large observational studies have shown strong associations of clinical benefit with hydroxychloroquine and some in fact provide low certainty signals of possible cardiac related harms when using hydroxychloroquine to treat COVID-19.

A detailed description of all fully published randomized clinical trials and observational studies are provided below.

Randomized clinical trials

Rajasingham (COVID PREP) 2020-09-21

- **design**
 - medrxiv publication - non-peer reviewed (NCT04328467)
 - randomized, allocation-concealed, double-blind, placebo-controlled trial of 1483 healthcare workers at high-risk of exposure (pre-exposure prophylaxis)
 - healthcare workers in ED, ICU, covid-19 wards, and first responders
 - North American study organized from the Minnesota group (same as Boulware and Skipper study above)
 - Apr 6 to May 26, 2020
 - power calculation: assumed 10% event rate over 12 weeks, 50% relative risk reduction with intervention, 80% power, needed 1050 participants per arm

- **inclusion**
 - healthcare workers (ED, ICU, covid ward, or first responder) including physicians, nurses, advanced care providers, respiratory therapists
 - 18 years or older
 - exposure risk to persons with covid-19

- **exclusion**
 - active or prior covid-19 infection
 - no expected exposure to patients
 - contraindication to hcq

- **interventions**
 - hcq 400 mg bid x 1 day then 400 mg once weekly x 12 weeks (n=494)
 - median hcq blood conc = 98 ng/mL
 - hcq 400 mg bid x 1 day then 400 mg twice weekly x 12 weeks (n=495)
 - median hcq blood conc = 200 ng/mL
 - matching placebo (n=494)

- **baseline**
Therapies for COVID-19
UPDATE: December 18th, 2020

- age 51; female 51%; white 85%; no comorbidities 66%; HTN 14%; asthma 10%
- emergency department 41%; ICU 18%; OR 12%; covid wards 10%; first responder 9%
- more than 14 hours direct contact per week 91% of participants
- AGMP performed by 79% of participants
- interacted with covid-19 patients while not wearing mask or face shield 14%

● outcomes
- primary: time to confirmed or probable covid-19-compatible illness (probably disease defined as cough, SOB, dyspnea or two or more of fever, chills, rigors, myalgia, headache, sore throat, new olfactory or taste disorders) - cases were adjudicated by 3 blinded ID physicians
 - hcq once weekly: 0.27 events per person-years (5.9% overall)
 - HR 0.72 (0.44 to 1.16, p=0.18 vs placebo)
 - hcq twice weekly: 0.28 events per person-years (5.9% overall)
 - HR 0.74 (0.46 to 1.19, p=0.22 vs placebo)
 - placebo: 0.38 events per person-years (7.9% overall)
 - combined hcq vs placebo
 - HR 0.73 (0.48 to 1.09, p=0.12)
- secondary
 - hospitalization
 - once weekly 3 patients, twice weekly 8 patients, placebo 9 patients
 - adverse events
 - hcq once weekly 31%, twice weekly 36%, placebo 21%; p<0.001
 - most common GI upset
 - no differences in serious adverse events
 - no differences in HCQ concentrations between those who with probable or confirmed covid infection vs those without covid infection in those taking hcq

● limitations
- did not meet power calculation (needed 3150 participants in total) due to low recruitment rate; recruitment severely limited by FDA reports of QT prolongation and arrhythmias with hcq two weeks after trial started
- did not study higher doses than once or twice weekly dosing regimens
- lack of available PCR testing meant only 18% of diagnosed infection were confirmed PCR positive

● interpretation
- randomized double-blinded trial did not show benefit with use of hydroxychloroquine at 400 mg once or twice weekly as pre-exposure prophylaxis in high risk health care workers for prevention of covid-19 infection
- due to the study no meeting power, if the absolute risk reduction of 0.11 events per person-years is real, then 9 high-risk healthcare workers would need to take hcq for one year to prevent 1 covid-19 case; benefit would be even less for healthcare workers at lower risk settings

Mitja 2020-07-26

● design
- cluster randomized open-label multi-center trial in 2314 asymptomatic contacts exposed to known COVID-19 cases (672) in Spain
- cluster randomization via clusters of healthy individuals epidemiologically linked to a positive covid case (entire cluster randomized to treatment or control)
Mar 17 to Apr 28, 2020
- power needed 2850 patients for 90% to detect 10% difference in incidence with expected incidence of 15% in control arm

- inclusion
 - age over 18
 - recent history of close contact exposure to PCR-confirmed covid case (i.e., more than 15 minutes within 2 meters, up to 7 days before study enrolment)
 - absence of covid symptoms in 2 weeks prior to enrolment
 - healthcare worker, household contact, nursing home worker, nursing home resident

- exclusion

- interventions
 - HCQ 800 mg x 1, then 400 mg daily x 6 days (n=1116)
 - standard of care (n=1198)

- baseline
 - age 49; female 73%; PCR test negative at baseline 88%; median exposure to enrolment 4 days; size of clusters per group 2; HCW 60%; household contacts 28%; nursing home residents 12%; CVD 12%; resp disease 5%; use of masks at time of exposure 66%

- outcomes
 - primary
 - PCR-confirmed symptomatic COVID-19 at day 14
 - 5.7% vs 6.2%, RR 0.89, 95% CI 0.54 to 1.46
 - secondary
 - symptomatic or PCR-confirmed COVID-19 infection
 - 18.7% vs 17.8%, RR 1.04, 95% CI 0.77 to 1.41
 - hospitalizations for covid
 - treatment emergent AE: 51.6% vs 5.9%
 - GI (nausea, diarrhea, abdo pain), CNS (drowsy, headache, metallic taste)
 - SAE: no differences

- limitations
 - open label design

- interpretation
 - in this large open-label study, use of HCQ in otherwise healthy asymptomatic patients with exposure to known covid index cases did not reduce rates of PCR-positive clinical infection with covid; there were substantially more minor GI and CNS adverse events with HCQ use

Cavalcanti 2020-07-23

- design
 - randomized, open-label clinical trial of 667 hospitalized patients with minimal oxygen requirements (504 with confirmed covid-19) at 55 hospital sites in Brazil
 - 18 years or older
 - hospitalized with suspected or confirmed covid-19
 - 14 days or less since symptom onset

- exclusion
 - oxygen supplementation more than 4 litres per minute
Therapies for COVID-19
UPDATE: December 18th, 2020

- oxygen supplementation via high flow nasal cannula or invasive or non-invasive ventilation
- use of hydroxychloroquine or macrolide in previous 24 hours
- history of severe ventricular tachycardia or ECG findings of QTc above 480 msec

Interventions
- hcq 400 mg bid + azithro 500 mg daily x 7 days (n=217)
- hcq 400 mg bid x 7 days (n=221)
- standard of care (n=227)

Baseline
- age 50; male 58%; HTN 40%; DM 19%; smokers 7%; obese 15%; COPD 2%; baseline receiving oxygen 42%; time from symptom onset randomization 7 days (IQR 5 to 9 days)

Outcomes
- primary: proportional odds of having higher score on a 7-level ordinal scale of overall clinical status (higher scores indicating worse condition) at day 15 in patients with confirmed covid-19 infection
 - hcq vs SoC: OR 1.21 (95% CI 0.69 to 2.11, p=1.00)
 - hcq + azithro vs SOC: OR 0.99 (95% CI 0.57 to 1.73), p=1.00
- number of days free from respiratory support within 15 days
 - 11.1 vs 11.2 vs 11.1 days
- in hospital death
 - 2.9% vs 4.4% vs 3.5%
- QT prolongation over 480 msec
 - 14.7% vs 14.6% vs 1.7%
- liver enzyme ALT/AST increase
 - 10.9% vs 8.5% vs 3.4%

Limitations
- 504 patients out of 665 randomized patients included in primary outcome analysis as the primary outcome was modified to evaluate only those patients with confirmed covid-19 infections
- open label design

Interpretation
- in hospitalized patients treated at 7 days after symptom onset, there were no clinical benefits with use of hydroxychloroquine with or without azithromycin compared to standard of care
- there were notably more events of QTc prolongation with patients who received hydroxychloroquine compared to those who did not receive it

Mitja 2020-07-16

- design
 - randomized, allocation concealed, open-label, multi-center clinical trial in 293 non-hospitalized patients in Spain between Mar 17 and May 26, 2020
 - 28-day follow-up
 - 60 (8%) of original randomized patients LTFU as missing PCR tests or withdrawal of consent
 - power: 280 patients for 80% power to detect 0.5 log reduction at two sided p=0.05

- inclusion
 - non-hospitalized
 - mild symptoms (fever, cough, SOB, anosmia)
Therapies for COVID-19
UPDATE: December 18th, 2020

- adults over 18 years old
- SARS-CoV-2 PCR test confirmed
- symptoms less than 5 days

- exclusion
 - moderate to severe covid req hospitalization
 - mental instability
 - known allergy to study drug
 - known retinal or severe liver or renal disease
 - history cardiac arrhythmias or QT prolongation
 - psoriasis
 - known HIV infection
 - pregnant

- interventions
 - HCQ 800 mg on day 1, then 400 mg daily x 6 days (n=136)
 - Standard of care (n=157)

- baseline
 - age 42; female 69%; 87% health care workers; viral load 7.9 log copies/mL; median symptom onset to randomization 3 days; CVD 10%; resp disease 6%; viral load at baseline 8 log 10 copies per mL

- outcomes
 - primary
 - viral RNA load in npx swabs up to 7 days after treatment start
 - day 3: -1.41 copies vs -1.41 copies, difference 0.01, 95% CI -0.28 to 0.29
 - day 7: -3.44 copies vs -3.37 copies, difference 0.07, 95% CI -0.44 to 0.29
 - secondary
 - hospitalization: 5.9% vs 7.1%, RR 0.75, 95% CI 0.32 to 1.77
 - time from randomization to resolution symptoms: 10 vs 12 days, p = 0.38
 - mechanical ventilation: no events
 - deaths: no events
 - any adverse event: 72% vs 8.7% (most frequent diarrhea, nausea, abdo pain, drowsiness, headache, metallic taste)
 - SAE: no differences

- limitations
 - open label design

- interpretation
 - reasonably well conducted open-label RCT showed no viriologic nor clinical symptoms benefits with using HCQ vs standard of care in otherwise healthy adult outpatients with COVID-19 after an average of 3 days of symptoms

Skipper 2020-07-16

- design
 - randomized, allocation concealed, double-blinded, placebo-controlled clinical trial of 491 symptomatic non-hospitalized patients at sites across USA and Canada [sister trial of study by Boulware above - same NCT number]
 - Mar 22 to May 20
 - conducted study via emails, internet surveys, and medication deliveries

- inclusion
 - non-hospitalized adults with less than 4 days of symptoms
PCR confirmed covid-19 or exposure to known covid-19 person

- exclusion
 - symptoms > 4 days, age < 18, current hospitalization, allergy, retinal eye disease, known G6PD deficiency, known CKD stage IV or V, known porphyria, weight < 40 kg, on chemotherapy, use of flecainide, amiodarone, digoxin, procainamide, or sotalol, known structural heart disease, history prolonged QTc, on QTc prolonging medications

- interventions
 - hcq 800 mg x 1 dose, then 600 mg in 6-8 hours, then 600 mg daily x 4 more days
 - placebo

- baseline
 - lab confirmed SARS-CoV-2 or exposure to known SARS-CoV-2 person 81%; enrolled within 1 day of symptoms 56%; Canadian 8%; age 41; weight 73 kg; women 53%; white 48%; smoker 4%; health care worker 57%; household contacts = 18%; no comorbidities 70%; HTN 10%; DM 4%

- outcomes
 - ***initial outcome was ordinal scale of not hospitalized, hospitalized, or ICU - but due to very low hospitalization rate, changed primary outcome to symptom scale***
 - primary: change in overall symptom score at day 14 based on 0-10 scale with no symptoms = 0 and most severe symptoms = 10 (death = 10)
 - hcq 2.60 point reduction, vs placebo 2.33 point reduction, difference -0.27 points (95% CI difference -0.61 to 0.07 points, p=0.117)
 - symptoms at day 14
 - hcq 49/201 (24%) vs placebo 59/194 (30%), p=0.21
 - medication adverse events
 - hcq 92/212 (43%) vs placebo 46/211 (22%), p<0.001
 - GI symptoms most commonly
 - no serious adverse events documented
 - no differences in hospitalizations or deaths (total incidence of both combined was 15/165 (3.2%))
 - no differences in subgroup with PCR-confirmed disease

- limitations
 - reasonably well designed RCT in view of limitations of running a trial during a pandemic
 - only 58% participants had SARS-CoV-2 testing due to testing limitations in US

- interpretation
 - hcq was not associated with reduction of symptoms in non-hospitalized symptomatic participants with covid-19 with less than 4 days of symptoms

Horby (RECOVERY) 2020-07-15

- design
 - medrxiv non-peer reviewed
 - randomized, open-label, adaptive platform trial from 176 hospitals in UK assessing 4716 hospitalized patients with varying levels of oxygen support
 - part of an adaptive study that studied multiple interventions versus standard of care
 - hydroxychloroquine, dexamethasone, and lopinavir/ritonavir now stopped
 - azithromycin, tocilizumab, and convalescent plasma ongoing as of this publication

- inclusion
 - hospitalized patients with clinically suspected or lab confirmed covid-19 infection
Therapies for COVID-19
UPDATE: December 18th, 2020

○ age > 18

• exclusion
 ○ known QTc prolongation
 ○

• interventions
 ○ hydroxychloroquine 800 mg at zero and six hours, then 400 mg q12h x 9 days or until discharge (n=1561)
 ○ standard of care (n=3155)

• baseline
 ○ age 65; male 62%; days from symptom onset 9; days since hospitalization 3; no oxygen required 23%; supplemental oxygen 60%; mech vent 17%; DM 27%; heart disease 25%; lung disease 21%; CKD 7%; SARS-CoV-2 positive 90%

• outcomes
 ○ primary: death at day 28
 ■ hcq 418/1561 (26.8%) vs SoC 788/3155 (25.0%), RR 1.09 (95% CI 0.96 to 1.23, p=0.18)
 ○ discharged from hospital alive within 28 days
 ■ hcq 941/1561 (60.3%) vs SoC 1982/3155 (62.8%), RR 0.92 (95% CI 0.85 to 0.99)
 ○ receipt of mechanical ventilation or death
 ■ hcq 388/1300 (29.8%) vs SoC 696/2623 (26.5%), RR 1.12 (95% CI 1.01 to 1.25)
 ○ no differences detected in cardiac arrhythmias
 ○ no significant findings in subgroup analyses

• limitations
 ○ open label design

• interpretation
 ○ in hospitalized patients with COVID-19, hcq was not associated with reduced mortality, but was associated with increased hospital length of stay and progression towards mechanical ventilation or death

Boulware 2020-06-03

• design
 ○ randomized, allocation concealed, double-blinded, placebo-controlled clinical trial of 821 asymptomatic participants with known COVID-19 exposure at sites across USA and Canada
 ○ trial Mar 17 to
 ○ participant self-enrollment via RedCap
 ○ original power calculation 1500 pts required for 50% relative risk reduction of estimated 10% event rate with placebo; second interim analysis reduced required sample size to 956 due to higher-than-expected event rate in control group; third interim analysis decided to stop trial due to futility

• inclusion
 ○ known COVID-19 exposure (voluntary report) to a person with lab-confirmed COVID-19 (household or occupational)
 ○ distance less than 6 feet for 10 minutes while wearing neither a face mask or eye shield (high risk) or while only wearing face mask (moderate risk)
 ○ within 3 or 4 days of exposure (trial procedure adjusted 1 week into trial)

• exclusion
 ○ age below 18
Therapies for COVID-19
UPDATE: December 18th, 2020

- hospitalized
- symptoms of COVID-19 or PCR-proven SARS-CoV-2
- allergy to study medication, G6PD deficiency
- CKD (stage 4 or 5), porphyria, weight below 40 kg, on chemotherapy
- current user of HCQ, azithromycin, or anti-arrhythmics
 - macrolides, quinolones, azoles
 - TCAs, SSRIs, NDRIs, SNRIs, anti-psychotics, methadone, triptans
- known prolonged QT interval
- medications associated with ventricular arrhythmias, cardiac death, or QT prolongation
- ischemic heart disease, structural heart disease

Interventions
- HCQ 800 mg x 1, then 600 mg 6 to 8 hours later, than 600 mg daily x 4 more days (total course 5 days) (n=414)
 - dose was selected to achieve concentrations above EC50 = 0.72 mcMol/L
- placebo matching folate tablets (n=407)

Baseline
- age 40; women 52%; white 60%; no comorbidities 72%; HTN 12%; DM 3%; asthma 8%; current smoker 3%; 68% taking no regular meds; HCW 66%; high risk exposure 88%; Canada 2.5%, USA 97%

Outcomes
- measured at day 14 after enrollment
- symptomatic illness confirmed by PCR or COVID-19 symptoms if testing unavailable
 - confirmed cases = positive PCR test
 - probable cases = cough, SOB, or two or more of fever, chills, rigors, myalgia, headache, sore throat, olfactory/taste disorders
 - possible cases = one of symptoms above or diarrhea
 - ***all require epidemiologic linkage; cases confirmed by panel of 4 ID physicians
 - HCQ 48/414 (11.8%) vs placebo 58/407 (14.3%), difference -2.4%, 95% CI -7.0 to 2.2%, p = 0.35
 - only 16/113 (14%) symptomatic cases were confirmed with PCR testing

- hospitalization
 - 1 hospitalization in each group
- deaths
 - no deaths in each group
- adherence to trial medication
 - HCQ 312/414 (75.4%) vs placebo 336/407 (82.6%), p = 0.01
- symptoms at day 14 for those who developed symptoms
 - no difference
- adverse events
 - no arrhythmias
 - any side effects
 - HCQ 140/349 (40.1%) vs placebo 59/351 (16.8%), p < 0.001
 - difference mostly GI side effects including nausea, upset stomach, diarrhea, abdo discomfort, vomiting
 - vision changes in 1% of HCQ group, none in placebo group

- sensitivity analysis
same findings when accounting for lost to follow-up participants (approx 10% all participants) -
- same findings with per-protocol analysis
- same findings when excluding “possible covid-19” cases
 - subgroups analysis
 - no differences in time of starting prophylaxis relative to exposure
 - no differences in type of exposure, sex, age
- limitations
 - relatively young healthy sample where majority had no comorbidities
 - HCQ: 47% correctly guessed HCQ, 44% unsure, 10% placebo
 - placebo: 36% correctly guessed placebo, 48% unsure, 17% HCQ
 - relies on participant voluntary information; may not have seen any healthcare provider to confirm symptoms
 - only 14% of symptomatic cases were confirmed by PCR
- interpretation
 - well performed RCT showed no significant differences in contracting covid-19 with prophylactic HCQ in asymptomatic participants with known covid-19 exposure within 96 hours
 - no apparent differences in serious adverse events, hospitalizations, arrhythmias in a relatively healthy population with few to no comorbidities
 - high incidence of GI related side effects (40% vs 17%) with HCQ
 - while potential benefits of HCQ in an older population with more comorbidities cannot be ruled out, there could also be more potential adverse events in such a population

Tang 2020-04-14 & Tang 2020-05-14:
- randomized, open-label multi-center study at 16 hospital sites with 150 patients in China (initial non-peer reviewed publication in medrxiv then later published in BMJ)
- compared hydroxychloroquine 400 mg three times daily x 3 days, then 400 mg twice daily to complete 2 weeks (n=75) vs usual care (n=75)
- trial originally planned to enrol 360 patients but the study was terminated early due to an interim analysis at 150 patients where the investigators found “promising results into clinical benefits that could save lives” as per medrxiv publication. This statement was based off a very small post-hoc subgroup analysis in patients who did not receive “antivirals” where hydroxychloroquine subgroup showed better symptom alleviation than control group: 8/14 vs 1/14; they also noted CRP was reduced more in the overall hydroxychloroquine group but the baseline CRP was higher in the hydroxychloroquine group and the actual differences in change from baseline were of questionable statistical and clinical significance: 6.99 vs 2.72 mg/L, p=0.045 (not adjusted for multiple comparisons)
- in the BMJ publication, early trial termination was decided due to low recruitment numbers with no mention of the above post-hoc subgroup analysis
- when looking at the entire study sample, there were no differences in its primary outcome of negative viral studies at any time point; there were also no differences in clinical symptoms at any time point
- more adverse effects were noted in the hydroxychloroquine group 30% vs 8.8%, p=0.001 and 2 patients in the hydroxychloroquine group developed serious adverse events
- limitations of this study are numerous; the main limitations are its open-label nature (performance and detection bias) and the study’s premature termination based on questionable interpretation of a small post-hoc subgroup analysis that showed weak and imprecise benefit for
hydroxychloroquine; in addition, patients were enrolled into this study after a mean of 17 days which leads us to question its generalizability; overall, this study does not offer credible evidence to support hydroxychloroquine use in treatment of hospitalized patients with late presentation and mild COVID-19 disease

Borba 2020-04-11:
- randomized, double-blinded single-center clinical trial of 81 hospitalized patients enrolled in Brazil; CLORO-COVID study; preliminary safety results (initial medrxiv publication, then published in JAMA Network Open)
- compared chloroquine base high dose 600 mg twice daily x 10 days (n=41) vs chloroquine base low dose 450 mg twice daily x 1 day, then 450 mg daily x 4 days, then placebo to complete 10 days (n=40); all patients received ceftriaxone x 7 days and azithromycin 500 mg daily x 5 days
- a complete placebo arm was not studied as the investigators reported it was “unethical” to evaluate chloroquine vs placebo as per Brazil’s national regulatory health agencies
- preliminary results evaluated outcomes at day 6 (full study to look at day 28)
 - high dose chloroquine arm was associated with trends towards higher mortality: 7/41 (17%) vs 4/40 (10%)
 - high dose arm also associated with increased incidence of QT prolongation above 500 ms: 7/28 (25%) vs 3/28 (11%)
 - no differences in viral negativity rate at day 5: 1/12 (8.3%) vs 0/14 (0%)
 - the high dose arm is no longer recruiting due to signal of harm
- limitations of this study include lack of placebo group to discern true benefits vs harms of any dose of chloroquine, the small sample size of this preliminary study, and the truncated study results at day 6; due to these concerns, results should be interpreted with an abundance of caution
- this study adds very little to our current knowledge of benefits vs harms of chloroquine in treatment of COVID-19

Huang 2020-04-01:
- randomized, open label, study of 22 hospitalized participants in Guangdong, China; published (peer-reviewed but trial registration not reported)
- compared chloroquine 500 mg twice daily x 10 days (n=10) vs lopinavir/ritonavir 400/100 mg twice daily x 10 days (n=12)
- did not report use of other agents like immunomodulators or steroids
- outcomes were assessed at 14 days included viral clearance, lung clearance on CT scans, hospital discharge, and adverse events
- limitations of this study include its non-blinded nature, seemingly sicker cohort of patients assigned to lopinavir/ritonavir (older, longer time from symptom onset to enrollment, higher SOFA scores, more patients with baseline CT findings of pneumonia), poor outcomes definitions, and non-inclusion of critically ill patients
- due to small sample size and limitations mentioned above, no strong conclusions can be drawn from this study

Chen 2020-03-30:
- randomized, open label, single-center clinical trial in Wuhan, China (non-peer reviewed publication but registered trial ChiCTR2000029559)
- randomized 62 participants to hydroxychloroquine 200 mg twice daily for 5 days (n=31) or usual care (n=31); use of placebo was not reported in the manuscript. All patients received oxygen
Therapies for COVID-19

UPDATE: December 18th, 2020

therapy, “antiviral agents”, IVIG, with or without corticosteroids. Critically ill patients or those with severe end organ dysfunction were excluded.

● time to defervescence was faster in the hydroxychloroquine group (2.2 vs 3.2 days); however, only 71% and 55% of the hydroxychloroquine group and control group had fever on day 0
● time to cough resolution was faster in hydroxychloroquine group (2.0 vs 3.1 days); however, only 71% and 49% of respective groups had cough on day 0
● 4 patients in the control group “progressed to severe illness”; this was not well defined
● higher proportion of patients in the hydroxychloroquine group achieved “more than 50% pneumonia absorption” on CT scan compared to the control group (80.6% vs 54.8%).
● limitations of this study include its overall small sample size, its non-blinded nature (performance and detection bias), major discrepancies between manuscript and registered trial protocol, use of IVIG and “anti-virals” in both groups, and its lack of generalizability to the North American population; the clinical endpoints in this study were of questionable relevance and the magnitude of benefit shown, if any, was not impressive

Chen 2020-03-24:

● randomized open-label single center pilot study; Shanghai China university journal; English abstract only; full article in Chinese; registered trial NCT04261517
● randomized 30 patients total (15 to each group) to hydroxychloroquine 400 mg daily x 5 days vs usual care. Both groups received conventional treatment of supportive care
● all patients received nebulized interferon, over two-thirds received umifenovir (Arbidol), and a small proportion received Kaletra
● primary outcome was negative pharyngeal swab viral study on day 7 and no difference was observed between groups (hydroxychloroquine 13/15 (86.7%) vs usual care 14/15 (93%), p > 0.05)
● no difference was observed in secondary outcomes such as time to normothermia or radiographic progression on CT; all patients showed improvement at follow-up exam
● overall, this trial was a negative finding study with small numbers and with possible confounders due to co-treatments with interferon and umifenovir

Observational studies

Arshad 2020-07-01

● observational cohort multicenter study in 2541 patients at 6 hospitals (Henry Ford Health System (HFHS)) in Michigan
● Cox-proportional hazards model adjusting for primary outcome of in-hospital mortality found improved survival in group who received hydroxychloroquine compared to standard of care (13.5% vs 26.4%, HR 0.34 (95% CI 0.25 to 0.45))
● secondary propensity matched analysis in a smaller proportion of patients demonstrated similar findings
● large observational study limited by its non-randomized nature; despite adjustment of primary outcome based on covariates, this does not address all known and unknown sources of confounding; conflicting evidence between this study and other non-randomized studies published to date

Mehra 2020-05-22
this study has been formally retracted by the Lancet; the corresponding author of this large observational study has stated that the veracity of the database (i.e., Surgisphere Corporation) used to collect patient data could not be verified

Rosenberg (2020-05-11)
- observational cohort multicenter study of 1438 patients at 25 New York City hospitals
- Cox-proportional hazard model used for adjusting primary outcome of in-hospital mortality found no differences comparing hydroxychloroquine versus standard of care (aHR 1.08, 95% CI 0.63 to 1.85) nor hydroxychloroquine and azithromycin versus standard of care (aHR 1.35, 95% CI 0.76 to 2.40)
- secondary outcomes found more cardiac arrests with hydroxychloroquine and azithromycin versus standard of care (OR 2.13, 95% CI 1.12 to 4.05) and no differences with QTc prolongation
- large observational study limited by its non-randomized nature; despite adjustment of primary outcome based on covariates, this does not address all known and unknown sources of confounding; a low certainty signal of cardiovascular harm was found with combination hydroxychloroquine and azithromycin

Geleris 2020-05-07
- observational cohort study with propensity score matching of 1376 patients in a New York quaternary care hospital using a database that compared patients who received hydroxychloroquine with or without azithromycin matched to those who did not (peer reviewed publication)
- primary outcome of intubation or death in the primary analysis with propensity score matching and adjustments showed no differences between treatment and controls (HR 1.04, 95% CI 0.82 to 1.32)
- limitations include its non-randomized nature which does not control for all known and unknown confounders and biases; also, as this was a database study, confirmation of medication regimens and doses received was not performed
- this large study suggests there are no differences in outcomes in those who receive hydroxychloroquine with or without azithromycin compared to controls; however, RCT evidence is needed to confirm findings

Huang 2020-05-04
- observational cohort study of 373 patients from 12 hospitals in Guangdong and Hubei, China (non-peer reviewed publication)
- compared hospitalized patients with “moderate” severity illness who received chloroquine up to 10 days versus standard of care
- patients presented between 2 to 25 days of symptom onset and no patients required transfer to ICU or died
- primary outcome was time to viral clearance per RT-RNA test which favored chloroquine (3 vs 9 days, difference 6 days, p < 0.0001)
- no differences in duration of hospitalization or no meaningful differences in duration of fever
- study is severely limited by its observational nature and lack of generalizability to hospitalized patients in BC as none of the 373 patients required transfer to ICU and there was a very wide range of duration of symptom onset to treatment
Mercuro 2020-05-01:
- observational case series of 90 patients from Boston assessing QTc effects of hydroxychloroquine with or without azithromycin (peer reviewed publication)
- QTc above 500 msec in hydroxychloroquine only group was 7/37 (19%) whereas in combination group was 11/53 (21%)
- 1 case of documented torsades in a patient taking hydroxychloroquine and azithromycin (QTc 499)
- study is limited by its lack of control group and relatively small numbers

Bessiere 2020-05-01:
- observational case series of 40 patients from a French ICU that assessed QTc effects of hydroxychloroquine with or without azithromycin (peer reviewed publication)
- for all patients, found QTc prolongation above 500 msec in 7/40 (18%) participants with more QTc prolongation in the combination therapy group 6/18 (33%) than the hydroxychloroquine group alone 1/22 (4.5%); no reported episodes of ventricular arrhythmias or torsades
- study is limited by its lack of control group and relatively small numbers

Yu 2020-05-01:
- observational cohort study of 568 critically ill patients from Wuhan, China to assess hydroxychloroquine versus standard of care (non-peer reviewed publication)
- hydroxychloroquine group only had 48 patients; concomitant medications given to patients included lopinavir/ritonavir or ribavirin (44%), IVIG (50%), and “immunoenhancers” (17%)
- study found lower mortality rates with hydroxychloroquine 9/48 (19%) versus standard of care 238/520 (46%) and more effects on lowering IL-6 levels in the hydroxychloroquine group
- study is limited by its observational nature with threats to selection, performance, and detection bias as well as markedly small numbers in the hydroxychloroquine group; in addition, due to the various concomitant therapies employed in this study, it is difficult to generalize to North American patients

Magagnoli 2020-04-23:
- observational cohort study with propensity score matching of 368 male patients from United States Veterans Health Administration in Virginia (non-peer reviewed publication)
- selected hospitalized patients with confirmed SARS-CoV-2 infection and identified patients based on bar code medication administration data
- compared hydroxychloroquine (n=97) vs hydroxychloroquine and azithromycin (n=113) vs standard of care (n=158) [doses and durations of therapy not reported]
- patients were matched on various co-variables including age, sex, race, BMI, comorbidities, vital signs, lab data
- deaths were more common in hydroxychloroquine group vs standard of care group, 27.8% vs 11.4% (aHR 2.61, 1.10 to 6.17); no significant differences with hydroxychloroquine and azithromycin group
- there were no differences in need for mechanical ventilation
- this trial has numerous limitations including its non-randomized nature (selection bias) and the fact that patients were identified in this database study based on drug dispensing via barcode system where no details regarding drug doses, duration, or relative start dates are known; additionally, despite efforts to balance groups using propensity score matching, risk of confounding by indication and residual confounding in studies with this type of design cannot be excluded
results from this study should be regarded as hypothesis generating; randomized controlled trials are still required to investigate the true benefits vs harms of hydroxychloroquine in COVID-19

Mahevas 2020-04-14 & Mahevas 2020-05-14:
- observational cohort study with propensity score matching at four hospitals with 181 patients in France (non-peer reviewed publication in medrxiv, then later published in BMJ)
- included hospitalized patients on general medical wards requiring oxygen by nasal prongs or face mask
- compared hydroxychloroquine 600 mg daily within 48 hours admission (n=84) vs usual care (n=89) and matched patients using 15/19 variables such as age, gender, comorbidities, immunosuppressants, and physiologic variables
- no differences found in primary outcome of survival without transfer to ICU at day 21: HCQ 76% vs SoC 75% (aHR 0.9, 95% CI 0.4 to 2.1)
- also no differences overall survival at day 21 nor survival without ARDS at day 21
- ECG changes in hydroxychloroquine group 8/84 (9.5%) that required treatment discontinuation after 4 days
- study was a well-performed relatively small observational study with adequate matching of patients and measures were taken to minimize the effects of known confounders and time-dependent bias; no significant differences were in efficacy outcomes were demonstrated in this study and a low certainty signal of increased risk of ECG changes with hydroxychloroquine was found

Chorin 2020-04-03:
- observational case series 84 hospitalized patients in New York taking hydroxychloroquine and azithromycin for COVID-19 to assess effects on QTc (non-peer reviewed publication)
- average ECG follow-up from exposure was 4 days
- average QTc prolonged from 435 (24) ms to 463 (32) ms at day 4, p < 0.001
- 11% patients developed new QTc prolongation above 500 ms
- renal failure was a major predictor of prolonged QTc; amiodarone was a weaker association
- no events of Torsades recorded including patients with QTc above 500
- this uncontrolled case series describes QTc prolongation occurring in hospitalized patients who take HCQ and azithromycin; 11% of patients experience QTc prolongation over 500 ms

Molina 2020-03-30:
- observational case series of 11 hospitalized patients in France
- all patients received hydroxychloroquine 600 mg daily for 10 days and azithromycin 500 mg on day 1, then 250 mg on days 2 to 5 (same dosing as original Gautret study listed below)
- 10/11 patients had fever and were on oxygen therapy
- 1 patient died, 2 transferred to ICU, 1 stopped therapy due to QTc prolongation by 65 ms
- mean blood trough hydroxychloroquine concentration 678 mg/L (range 381 to 891)
- 8/10 patients still tested positive in nasopharyngeal swabs at days 5 to 6 after treatment
- limitations of this study include its very very small small sample size and its lack of control group
- difficult to draw any meaningful conclusions besides to note that the viral PCR effect of hydroxychloroquine plus azithromycin in this small group of patients was not nearly as evident as the original Gautret study listed below

Gautret 2020-03-28:
● observational case series of 80 hospitalized patients in a single-center in France

● recorded 80 cases of hospitalized patients with positive viral studies admitted to an infectious diseases ward where patients received hydroxychloroquine 200 mg three times per day for 10 days plus azithromycin for 5 days

● average duration of symptoms prior to hospitalization was 5 days with a wide range (1 to 17 days) and 4/80 patients were asymptomatic (reasons for admitting these patients were not reported); in general, patients were reasonably healthy with an NEWS score of 0 to 4 in 92% of cases. Only 15% of cases required oxygen therapy.

● 93% of participants had negative viral PCR at day 8; viral cultures done in select patients were 97.5% negative by day 5

● at time of writing, 1/80 patients died, 14/80 patients still hospitalized (3/80 patients admitted to ICU), and 65/80 patients discharged home

● study has numerous limitations including its lack of control group, its study population’s overall lack of need for oxygen support which argues against need for hospitalization and antiviral treatment in the first place, and unclear clinical relevance of repeated viral PCR studies and cultures

Gautret 2020-03-20:

● observational cohort series of 42 hospitalized patients in France with positive viral study (initial medrxiv publication, then published in International Journal of Antimicrobial Agents; however, in the peer-reviewed publication, one of the authors of this study is the Editor-in-Chief of the publication journal; the professional society of this journal (ISAC) and Elsevier issued a statement on Apr 11th, 2020 that an independent peer-review of this study is ongoing)

● 26 patients received hydroxychloroquine 200 mg three times per day for 10 days; 6 of these patients received azithromycin based on clinician preference.

● 16 patients who either refused to receive hydroxychloroquine or were treated at another center served as controls

● 6 patients in the study were asymptomatic throughout the study

● study primary endpoint reported that COVID-19 PCR was negative in 100% of patients on day 6 who took both drugs, 57.1% in those who received hydroxychloroquine alone, and 12.5% of those who did not receive treatment

● 6 patients treated with hydroxychloroquine were excluded from the analysis as viral samples were unavailable due to transfer to ICU, discharge home, treatment cessation, or death

● no clinical endpoints were reported and the endpoint for negativity was a CT value ≥ 35 which differs from typical virological studies

● main limitations of this study include its non-randomized nature and lack of blinding which introduces selection, performance and detection bias, its small sample size, its significant loss to follow-up (attrition bias), and lack of clinical outcomes; in addition, a significant proportion of patients were asymptomatic which argues against generalizability of study results

● due to limitations stated above, meaningful clinical conclusions from this study cannot be derived

A Chinese report states that chloroquine use in 100 patients “is superior to the control treatment in inhibiting the exacerbation of pneumonia, improving lung imaging findings, promoting a virus negative conversion, and shortening the disease course” but patient data was not reported (Gao 2020). No other publication providing patient data pertaining to this study has been found. The study’s author was emailed for detailed patient data and the group is awaiting response.
An expert consensus group in Guangdong, China is recommending chloroquine phosphate 500 mg bid x 10 days for all patients with COVID-19 without contraindications to chloroquine (Jiang 2020). No clinical evidence was provided to support this recommendation.

In vitro Data
In-vitro data using Vero cells shows that chloroquine can inhibit COVID-19 with a 50% effective concentration (EC₅₀) of 1 μM, implying that therapeutic levels could be achieved in humans with a 500 mg dose (Wang 2020). The EC₅₀ of chloroquine for SARS is 4.4 to 8.8 μM (Colson 2020), suggesting that chloroquine could be more effective against COVID-19 than SARS.

Hydroxychloroquine might be more potent for COVID-19 than chloroquine. Hydroxychloroquine’s EC₅₀ is 0.72 μM for COVID-19 (Yao 2020). Based on pharmacokinetic modelling, the study recommended a dose for hydroxychloroquine 400 mg twice daily x 1 day, then 200 mg twice daily x 4 days for treatment of COVID-19, as it reached three times the potency of chloroquine phosphate when given 500 mg twice daily 5 days (Yao 2020).
Oseltamivir

Recommendation:
Oseltamivir is not recommended for treatment or prophylaxis of COVID-19.

Neuraminidase inhibitors do not appear to have activity against COVID-19 (Tan 2004). Initial empiric therapy with neuraminidase inhibitors could be reasonable during influenza season in critically ill patients, if there is concern that the patient might have influenza pneumonia. Such patients can have confirmatory nasopharyngeal swabs for influenza. Currently, in many locations, patients presenting with viral pneumonia are much more likely to have influenza than COVID-19. Otherwise, the role for oseltamivir specifically for COVID-19 is limited.
Ribavirin and Interferon

Recommendation:
Interferon IV/SC is not recommended for the treatment of COVID-19. Ribavirin/Interferon (Inhaled) is not recommended outside of approved clinical trials.

Human Data

There are limited clinical trials evaluating the efficacy and safety of ribavirin and/or interferon in combination with other therapeutic agents for COVID-19 treatment.

A multicenter observational study in 349 critically ill patients with MERS compared ribavirin and interferon to controls who did not receive either therapy (Arabi 2019). Unadjusted 90-day mortality rates were higher in the treatment group (73.6%) versus controls (61.5%) p = 0.02. The adjusted analysis showed no difference between the two groups. Additionally, ribavirin and interferon treatment was not associated with more rapid viral clearance.

(Wan 2020) studied a total of 135 hospitalized patients with COVID-19. All patients received antiviral therapy (135 [100%] (Kaletra and interferon were both used), antibacterial therapy (59 [43.7%]), and corticosteroids (36 [26.7%]). In addition, many patients received traditional Chinese medicine (124 [91.8%]). It is suggested that patients should receive Kaletra early and should be treated by a combination of western and Chinese medicine. As of February 8, 2020, a total of 120 patients remained hospitalized, 15 patients (11.1%) were discharged, and one patient had died. The 28-day mortality rate was 2.5%. It is unclear of the role of interferon in this combination regimen.

(Yuan 2020) evaluated viral clearance and biochemical markers (IL-6 and CRP) of 94 discharged COVID-19 patients. Interferon + lopinavir/ritonavir (N=46) and interferon-alpha + lopinavir/ritonavir + ribavirin (N=21) appeared beneficial, and LDH or CK reductions appeared to be associated with favourable outcome. Doses and regimens were not indicated. Both regimens appeared beneficial with no differences in length of stay or PCR negative conversion. The role of interferon is unclear as other antivirals were used in both treatment arms.

(Qui 2020) retrospectively reviewed epidemiological and clinical data of confirmed COVID-19 pediatric patients (aged 0-16 years; mean 8.3 years) from 3 hospitals in Zhejian, China. All 36 children received interferon alfa by aerosolization BID, 14 (39%) Kaletra syrup BID, and 6 (17%) required O2. All patients were cured. The role of interferon is unclear as Kaletra was also used.

(Hung 2020), conducted a multi-centre, prospective, open-label, randomized, Phase 2 trial in mild to moderate COVID-19 patients in Hong Kong. Patients received a combination of lopinavir 400 mg/ritonavir 100 mg every 12 hours, ribavirin 400 mg every 12 hours, and interferon beta-1b 8 million international units subcutaneously on alternate days (n=86) vs. lopinavir 400 mg/ritonavir 100 mg every 12 hours for 14 days (n=41) control. Median time from start of treatment to negative nasopharyngeal swab was shorter in the combination group (7 days vs. 12 days, hazard ratio 4.37 [95% CI 1.86 to 10.24], p=0.0010). Median time from start of study to treatment was 5 days. Limitations included open-label design and 34 patients in the combination arm did not receive interferon as they were admitted 7 days after symptom onset and the median number of interferon doses was 2. Based on this study, we are unable to conclude the benefit of the individual agents.
(Xie 2020) reported a case of a 41-year old Chinese male who developed COVID-19 after attending an internal medicine-cardiovascular clinic in close contact with a patient with SARS-CoV-2. Patient developed ground glass opacity in both lungs, requiring admission to hospital. On Day 5 after admission, patient was SARS-CoV-2 oropharyngeal sample positive. Patient received lopinavir 400 mg/ritonavir 50 mg, arbidol 200 mg three times daily, and interferon-alpha-1b 50 ug inhaled twice daily for 7 days, and patient was discharged on Day 16 after full recovery. The authors comment on the removal of ribavirin from their treatment protocol due to no observed benefit when compared to lopinavir/ritonavir alone. They also comment on the common use of interferon for treatment of respiratory diseases in China with no strong supportive data.

(Davoudi-Monfared 2020) conducted an open-label randomized efficacy and safety trial in Iran evaluating interferon beta-1 alpha in severe COVID-19 treatment. Forty-two patients received interferon beta-1-alpha 44 mcg/mL SC three times weekly x 2 weeks and the national protocol (hydroxychloroquine plus Kaletra or atazanavir/ritonavir) vs. control national protocol (n=39 patients). Primary outcome was time to clinical response based on an ordinal scale. Mean age was 60 years. Time to clinical response did not differ (9.7 interferon beta-1 alpha vs. 8.3 days, p=0.95). For secondary endpoints, at Day 14, 67% interferon beta-1 alpha vs. 44% were discharged, and 28-day mortality was 19% interferon beta-1 alpha vs. 44%, p=0.015. This is a relatively small study, which shows potential benefit of interferon in combination with other treatments.

(Eslami et al, 2020) studied sofosbuvir and daclatasvir (antivirals against hepatitis C virus) vs. ribavirin 600 mg q12h and the national standard regimen (Kaletra and single-dose hydroxychloroquine) in severe COVID-19. Primary endpoint was start of medication until discharge from hospital with secondary endpoints of duration of ICU stay and mortality. Sixty-two subjects met inclusion, with 35 enrolled in sofosbuvir/daclatasvir arm vs. 27 in ribavirin arm. Median duration of stay was 5 days for sofosbuvir/daclatasvir group vs. 9 days for ribavirin group. Mortality in sofosbuvir/daclatasvir group was 2/35 (6%) vs. 9/27 (33%) for ribavirin. Further investigation in larger-scale trials is required.

(Kasgari et al, 2020) assessed efficacy of sofosbuvir and daclatasvir with ribavirin for treating COVID-19. Single-centre, randomized controlled trial in adults with moderate COVID-19 in Iran. Randomized to 400 mg sofosbuvir, 60 mg daclatasvir and 1200 mg ribavirin (intervention group) or to standard care (control group). Primary endpoint length of hospital stay. Forty-eight patients were recruited; 24 patients were randomly assigned to intervention group and 24 to control group. Median duration of hospital stay was 6 days in both groups (P = 0.398); number of ICU admissions in the sofosbuvir/daclatasvir/ribavirin group was not significantly lower than control (0 versus 4, P = 0.109). No difference in number of deaths between groups (0 versus 3, P = 0.234). Cumulative incidence of recovery was higher in the sofosbuvir/daclatasvir/ribavirin arm (Gray’s P = 0.033). Larger randomized trials required.

(Rahmani et al, 2020) in open-label, randomized clinical trial in Iran, adult patients (≥18 years old) with severe COVID-19 were assigned (1:1) to IFN group or control. Patients received IFN β-1b (250 mcg subcutaneously every other day for two consecutive weeks) along with the national protocol medications vs. the control who received only national protocol medications (lopinavir/ritonavir or atazanavir/ritonavir plus hydroxychloroquine for 7–10 days). Primary outcome was time to clinical improvement. Secondary outcomes were in-hospital complications and 28-day mortality. Eighty patients were enrolled and 33 patients in each group completed study. Time to clinical improvement in IFN group was significantly shorter than control group ([9(6–10) vs. 11(9–15) days respectively, p = 0.002, HR = 2.30; 95% CI: 1.33–3.39]). At day 14, percentage of discharged patients was 78.79% and 54.55% in the IFN and control groups respectively (OR = 3.09; 95% CI: 1.05–9.11, p = 0.03). ICU admission rate in
control group was significantly higher than IFN group (66.66% vs. 42.42%, p = 0.04). Duration of hospitalization and ICU stay were not significantly different between groups. All-cause 28-day mortality was 6.06% and 18.18% in IFN and control respectively (p = 0.12). IFN β-1b was effective in shortening time to clinical improvement without serious adverse events in patients with severe COVID-19; admission in ICU and need for invasive mechanical ventilation decreased. Further randomized clinical trials with large sample size are needed.

(Monk 2020) evaluated the safety and efficacy of nebulized interferon beta-1a (SNG001) for treatment of COVID-19 in R, DB, PC, phase 2 trial in adults (non-ventilated). Nebulized interferon (n=50) vs. placebo (n=51) x 14 days, plus standard of care with a 28 day follow-up. Primary outcome was change in clinical condition on WHO Ordinal Scale for Clinical Improvement (OSCI) during the dosing period (9 point scale: 0 - no infection; 8 - death). At baseline, 37 interferon vs. 29 placebo required supplemental oxygenation. Median time to initiation of treatment was 10 days. Interferon had greater odds of improvement on OSCI scale (odds ratio 2.32 [95% CI 1.07–5.04]; p=0.033); interferon more likely to recover to an OSCI score of 1 (no limitation of activities) (hazard ratio 2.19 [95% CI 1.03–4.69]; p=0.043). On Day 28, 58% interferon vs. 35% placebo recovered (OSCI 0 or 1). 3 interferon were intubated vs. 5 placebo; 3 deaths in the placebo group and none with interferon. Interferon was well tolerated; headache (7 [15%] patients interferon vs. 5 [10%] in placebo). Authors suggest potential for more rapid recovery. Limitations included validity of OSCI score and definition of change in clinical condition, which was primary endpoint, non-critically ill, and small sample size. Interferon may offer some benefit, but requires further study in larger trials.

In vitro Data
Data from a molecular docking experiment using the SARS-CoV-2 RNA dependent RNA polymerase (RdRp) model identified tight binding of sofosbuvir and ribavirin to the coronavirus RdRp, thereby suggesting possible efficacy of sofosbuvir and ribavirin in treating the COVID-19 infection (Elfiky 2020).

Interferons have also been shown to suppress the viral replication of SARS in vitro and been considered for the current outbreak in China (Chan 2020).

Interferon-alpha and beta at 50 IU/mL reduces SARS-CoV-2 titres by 3.4 log and 4 log in Vero cells, respectively. EC50 of interferon-alpha and beta is 1.35 IU/mL and 0.76 IU/mL, respectively. Interferon appears to suppress SARS-CoV-2 replication in-vitro, corresponding to clinically achievable concentrations. (Mantlo 2020)

From experience in treatment of hepatitis C, ribavirin is well known to be a poorly tolerated drug. Flu-like symptoms and nausea develop in nearly 50% of patients and lead to premature discontinuation of hepatitis C treatment. Hemolytic anemia is a black box warning for ribavirin. Regular monitoring of CBC for anemia, leukopenia is required as ribavirin causes bone marrow suppression in a significant proportion of patients within 1 to 2 weeks of treatment. Ribavirin may also cause liver toxicity and dermatologic reactions.
Colchicine

Recommendation:
Colchicine is not recommended for treatment or prophylaxis of COVID-19 outside of approved randomized-controlled trials.

Human Data:
Case series of two COVID-19 positive kidney transplant patients, with one being treated with colchicine. A 52-year-old female, 8 months post-transplant, was admitted to hospital and received colchicine 1 mg on Day 8, and 0.5 mg/day thereafter, as well as concurrent hydroxychloroquine 200 mg orally twice daily, antivirals (darunavir plus cobicistat) and antibiotics. Interleukin-6 concentration decreased to 36 pg/mL after 24 hours, and patient appeared clinically stable on Day 14 (at time of publication). No conclusive recommendations can be drawn from the treatment of one transplant patient with concomitant therapies (Ganolfini 2020).

Retrospective study in Israel using a database to examine protective effects of hydroxychloroquine and colchicine against COVID-19, comparing those who tested positive vs. negative in terms of rate of administration of medications. Sample of 14,520 subjects were screened for COVID and 1317 were positive. No significant differences in rates of hydroxychloroquine or colchicine use between COVID-19 positive and negative patients (hydroxychloroquine 0.23% vs. 0.25% and colchicine 0.53% vs. 0.48%, respectively). Hydroxychloroquine and colchicine do not appear protective for COVID-19. (Gendelman 2020)

There are several ongoing clinical trials, based on the potential anti-inflammatory effects of colchicine.

(NCT04322682) The Montreal Heart Institute **COLCORONA Study** is a phase 3 multi-centre, randomized, double-blind, placebo-controlled outpatient study (n=6000) to determine the efficacy and safety of colchicine 0.5 mg PO bid x 3 days, then 0.5 mg daily x 27 days vs. placebo for treatment of COVID-19 infection in reducing death and lung complications.

(NCT04326790) **Deftereos 2020** is conducting a prospective, randomized, open labelled, controlled study (n=180) in Greece comparing usual medical treatment and colchicine 1.5 mg PO x 1 (1 mg PO x 1 if receiving azithromycin), followed 60 min by 0.5 mg if no gastrointestinal effects), then 0.5 mg PO BID for weight >60 kg [0.5 mg PO daily if <60 kg] vs. usual medical treatment. The endpoints are time for CRP levels to be >3xUNL, difference in troponin within 10 days, and time to clinical deterioration.

(NCT04322565) An Italian phase 2 randomized, open-label study(n=100) evaluating colchicine 1 mg (or 0.5 mg in chronic kidney disease)/day and standard of care vs. only standard of care in mild and moderately ill COVID-19 positive patients with the endpoints of time to clinical improvement or hospital discharge.

(NCT04328480) This is an Argentinian phase 3 randomized, open-label, controlled trial (n=2500) assessing colchicine arm [colchicine 1.5 mg, then 0.4 mg after 2 hours, followed by 0.5 mg PO BID x 14 days or until discharge; if patient is receiving lopinavir/ritonavir, colchicine 0.5 mg, then after 72 hours 0.5 mg PO q72 hours x 14 days or until discharge; if patient is starting on lopinavir/ritonavir, colchicine
0.5 mg 72 hours after starting Kaletra, then 0.5 mg PO q72 hours x 14 days or until discharge] vs. standard of care in moderate/high-risk COVID-19 patients. The primary endpoint is all-cause mortality.

(NCT04350320) Spain - Phase 3, randomized, controlled, open-label trial comparing colchicine 1.5 mg, then 0.5 mg every 12 hours for 7 days, and 0.5 mg every 24 hours until completion of 28 days of total treatment) vs. standard of care in hospitalized COVID-19 patients within 48 hours (n=102). Primary endpoints are improvement in clinical status and IL-6 levels up to 28 days.

(NCT04360980) Iran - Randomized, double-blind trial evaluating colchicine 1.5 mg, then 0.5 mg BID and standard therapy vs. standard therapy (vitamin C 3 g daily, thiamine 400 mg daily, selenium, Omega-3 500 mg daily, vitamin A, vitamin D, azithromycin, ceftriaxone, Kaletra 400 BID for 10 days(n=80). Primary endpoints are clinical, virological, and biomarker resolution.

(NCT04355143) Los Angeles - Open-label, randomized trial of colchicine to reduce myocardial injury in COVID-19 (COLHEART-19) evaluating colchicine 0.6 mg BID x 30 days vs. standard of care (n=150). Primary endpoint is maximum troponin level at 30 days.

In vitro data:
SARS-CoV-2 proteins such as viroporins E, 3a and 8A involved in viral replication appear to activate NLRP3 (Castaño-Rodriguez 2018). Inflammasome NLRP3 is involved in innate immunity and is proposed to be a major pathophysiological component in the clinical course of patients with COVID-19 (Deftereos 2020).
Ascorbic Acid and Vitamin D

Recommendation:
Ascorbic acid and Vitamin D are not recommended for treatment or prophylaxis of COVID-19 outside of approved randomized-controlled trials.

Ascorbic acid is an antioxidant and cofactor in a number of physiologic pathways including phagocytosis and chemotaxis of leukocytes, replication of viruses, and production of interferon. Animal studies have shown reduction of incidence and severity of bacterial and viral infections.

In vitro data: No studies were found specific to COVID-19, SARS or MERS

Human data:

- **ARDS:** [CITRIS ALI](#) Multicentre, double-blind, placebo-controlled RCT, 50 mg/kg IV q6h x 96 hrs did not significantly improve mSOFA scores at 96 hours or CRP/thrombomodulin levels at 168 hours. Forty-six prespecified secondary outcomes including mortality but no adjustments made for multiple analyses. No unexpected study-related adverse effects occurred.
- **Septic shock:** [VITAMINS](#) Multicentre, open-label RCT comparing ascorbic acid 1.5 g IV q6h PLUS thiamine 200 mg IV q12h PLUS hydrocortisone 50 mg IV q6h vs hydrocortisone alone until resolution of shock or up to 10 days. No statistically significant difference in outcome of time alive or vasopressor free up to 10 days. No serious adverse effects were reported.
- **Common cold:** [Cochrane Systematic Review](#) did not find that regular supplementation reduced the incidence of the common cold. No consistent effect in reduction of duration or severity of symptoms was seen in therapeutic trials.
- **COVID-19:** No studies of ascorbic acid in COVID-19 have been published to date but studies are ongoing.
 - [NCT04264533](#) Blinded, placebo-controlled RCT in Zhongnan Hospital, China using ascorbic acid 12g IV q12h x 7 days versus sterile water in adults admitted to ICU with severe/critical SARI due to COVID-19. Primary outcome: ventilator free days at day 28. Study terminated early (Mar 2, 2020) prior to reaching sample size due to low enrollment. Study results pending.
 - [NCT04323514](#) Open-label, longitudinal, non-comparator study in Palermo, Italy. Adults and children hospitalized with COVID-19 pneumonia will receive ascorbic acid 10 g IV once. Primary outcome of in-hospital mortality at 72 hours. Study estimated to be completed by March 31, 2021.
 - [NCT03680274](#) LOVIT Multicentre blinded, placebo-controlled RCT in Canada comparing ascorbic acid 50 mg/kg IV q6h vs NS or D5W IV q6h x 96 hours in adult patients admitted to the ICU with suspected/proven infection (including COVID-19) on vasopressors. Primary outcome of death and persistent organ dysfunction. Study estimated to be completed by December 2022.
 - [NCT04344184](#) EVICT-CORONA-ALI Blinded, placebo-controlled RCT in US comparing ascorbic acid 100 mg/kg IV q8h vs D5W IV q8h for up to 72 hours in adults hospitalized with PCR confirmed COVID-19 requiring oxygen supplementation or oxygen saturation of <93%. Primary outcome is number of mechanical ventilator-free days at day 28. Study estimated to be completed by May 2021
○ NCT04357782 AVoCaDO open label non-randomized study in US using ascorbic acid 50 mg IV q6h x 4 days in adults admitted to hospital with PCR confirmed COVID-19. Primary outcome is incidence of adverse events. Study estimated to be completed by August 2020.

○ NCT04342728 COVIDAtoZ open label RCT in US using ascorbic acid 8000 mg/day (in 2-3 divided doses), zinc gluconate 50 mg/day, ascorbic acid with zinc gluconate or standard of care in adult outpatients who present to clinic and test positive for COVID-19. Primary outcome is time to 50% reduction in cumulative symptom score. Study estimated to be completed by April 2021.

Vitamin D plays a role in adaptive immunity and cellular differentiation, maturation and proliferation of various immune cells. Reduced vitamin D levels in calves has been suggested as a risk factor for bovine coronavirus infections.

In vitro: no data found specific to SARS CoV-2

Human data:

- **Munshi R et al**: Meta-analysis of studies that reported vitamin D levels in patients with COVID-19. Studies also required to have at least one pair-wise comparison of severe vs non-severe outcome, ICU vs ward admission, live vs death. Seven studies with 1368 patients were included. Patients with poor prognosis (ARDS/mechanical ventilation, ICU admission or death) had significantly lower vitamin D levels (standardized difference -5.12 95%CI -9.14 - -1.10 p=0.012)

- **Ohaegbulam KC et al 2020**: Case series of 4 patients hospitalized at Long Island Jewish Forest Hills Hospital with PCR confirmed COVID19 given oral cholecalciferol at 1000 IU daily or ergocalciferol 50000 IU daily for 5 days. All patients were identified to be vitamin D deficient. The two patients who received high dose ergocalciferol appeared to recover more rapidly than those receiving standard dose cholecalciferol. Ergocalciferol and cholecalciferol are not bioequivalent.

- **Castillo ME et al 2020**: Parallel pilot, randomized open-label, double masked trial part of the Covidiol trial (NCT04366908) that included 76 consecutive hospitalized with COVID-19 (CXR with evidence of viral pneumonia and PCR positive for SARS CoV2) and CURB-65 score of >1. All patients received hydroxychloroquine, azithromycin and those with pneumonia and NEWS score ≥5 received ceftriaxone. Patients randomized to receive in a 2:1 fashion, calcifediol 0.532 mg or nothing on day 1, then 0.266 mg daily or nothing on day 3-7. Outcomes of interest were ICU admission, hospital discharge or death. Of the patients receiving calcifediol, 1/50 patients was admitted to ICU. 13/26 patients of the ‘no-calcifediol’ arm required ICU admission. Two patients died in the ‘no-calcifediol’ arm and none in the treatment arm. 61.54% (no-calcifediol) vs 48% (calcifediol) had at least 1 bad prognostic risk factor. The Covidiol trial is not yet recruiting.

- **Tan CW et al 2020**: Cohort study that included all consecutive patients with COVID-19 who were 50 years old or older admitted to a single centre in Singapore between January 15 and April 15, 2020. Patients admitted after April 6th who were more than 50 years of age, and not requiring oxygen or ICU support, received oral vitamin D3 1000 IU daily, magnesium oxide 150 mg daily, and vitamin B12 500 mcg daily for up to 14 days (n=17). Any patient during the study period that was more than 50 years of age was in the control group (n=26). Primary outcome was requirement of oxygen therapy if oxygen saturation was below 95% and/or requirement of ICU support (not defined). Intervention arm was younger, had less comorbidities, and more likely to have a normal CXR on admission. More patients in the control arm received therapies such as
remdesivir. 17.6% in the intervention arm vs 61.5% in the control arm reached the outcome. Limitations include small study size and non-randomized design.

- **NCT04334005** Randomized, double blind controlled trial in Granada Spain using vitamin D 25000 IU comparing to standard care (NSAIDs, ACEi, ARB, or thiazolidinediones, based on current recommendations) in adults 40-70 years of age with non-severe symptoms of respiratory infections. Primary outcome of all-cause mortality. Not yet recruiting.

- **NCT04363840** LEAD COVID-19 open-label RCT in New Orleans using no intervention vs aspirin 81mg PO daily vs aspirin 81 mg PO daily with vitamin D 50000 units PO weekly (in those who are vitamin D deficient) x 2 weeks. Primary outcome of hospitalization at 2 weeks.

- **NCT04385940** Blinded RCT in Alberta using high (ergocalciferol 1.25 mg) vs low dose vitamin D (vitamin D3 1000 IU) in adults with COVID-19. Primary outcome of number of participants with symptom recovery. Study estimated to be completed by December 2020.

- **NCT04344041** CoVit trial - multicentre, open label RCT in France using single high-dose vitamin D 400000 IU vs 50000 IU orally in patients 70 years of age and older with PCR confirmed COVID-19 OR CT chest findings suggesting a viral pneumonia. Primary outcome of death at 14 days. Study estimated to be completed by July 2020.
Biologics/Small Molecules (Tocilizumab, Sarilumab, Anakinra, Baricitinib)

Recommendation:
Biologics/Small Molecules (Tocilizumab, Sarilumab, Anakinra, Baricitinib) are not recommended for treatment or prophylaxis of COVID-19 outside of approved randomized-controlled trials.

Tocilizumab is an interleukin-6 (IL-6) monoclonal antibody used as immunotherapy for treatment of rheumatoid arthritis. Sarilumab is a humanized monoclonal antibody targeted towards the IL-6 receptor and used for the same condition. Anakinra is an IL-1 receptor antagonist.

Initial interest in cytokine blockade started when a small case series from Wuhan, China was published in a non-peer reviewed Chinese website Chinaxiv.org and subsequently in the Proceedings of the National Academy of Sciences (Xu 2020). Twenty critically-ill patients with elevated levels of IL-6 received tocilizumab. The document stated that 15 of the 20 patients (75.0%) had lowered their oxygen intake. The time frame of this change was not clear from the report. Biochemical markers such as the CRP and lymphocyte count improved in most patients. Due to the uncontrolled nature of the study, small patient numbers and lack of hard clinical outcomes, the efficacy of tocilizumab in the treatment of severe COVID-19 was unknown.

Subsequently, several studies demonstrated that inflammation, as measured by CRP or IL6, were associated with progression to respiratory failure or death. (Herold 2020, Laguna-Goya). Several randomized clinical trials were initiated.

Multiple retrospective cohort studies were initially published on this topic. Most had significant limitations in their ability to determine the true benefit for patients with COVID-19 given the observational nature of the intervention. They did, on the whole, indicate that there may be a clinical or mortality benefit for patients (Capra 2020, Guaraldi 2020). A recent meta-analysis that included published retrospective and prospective studies, but not RCTs found an overall reduced risk of mortality with tocilizumab (HR 0.57 [0.36, 0.92]), but sensitivity analysis indicated that this apparent benefit was absent when corticosteroids were included in the standard of care arm (Boregowda 2020).

However, randomized clinical trials have not produced the same results. The Sanofi sponsored trials of sarilumab failed to meet their key primary or secondary endpoints (Sanofi press release 2020). Final publication of these trials are still pending but the company has suspended further study of this drug for COVID-19. Similarly, two large randomized controlled clinical trials of tocilizumab for COVID-19 have been reported in pre-print form. COVACTA was a Hoffmann-Roche sponsored multicentre, double-blind, placebo-controlled clinical trial in patients with severe COVID-19. 452 patients were randomized. There was no difference in clinical status or mortality at day 28 between the placebo and tocilizumab arms. Final publications of this trial are still pending (Rosas 2020).

EMPACTA was a Genentech sponsored trial for patients with severe COVID-19 pneumonia who were not mechanically ventilated at the time of enrollment. Sites enrolling high-risk and minority patients were encouraged and approximately 50% of patients in both arms were Hispanic/Latino, 15% Black/African American and 12% American Indian/Alaska Native. The primary outcome of a combination of death or mechanical ventilation by day 28 was significant -- 12.0% (8.52% to 16.86%) vs. 19.3 % (13.34% to
27.36%) for the tocilizumab and placebo arms, respectively (log-rank P=0.0360; hazard ratio, 0.56 [95% CI, 0.33 to 0.97]). However, all-cause mortality by day 28 was not significant (Salvarani #) by different -- 10.4% vs. 8.6% for tocilizumab vs. placebo, respectively (weighted difference, 2.0% [95% CI, – 5.2% to 7.8%]). Final publication of this report is still pending (Salama 2020).

The smaller CORIMUNO trial was an investigator-initiated, open-label RCT of tocilizumab vs. standard-of-care, that enrolled at 9 hospitals in France in early April. The study failed to meet its primary endpoint, which was a composite of progression to a score of 5 or higher on the WHO-CPS at day 4 (-9.0% [-21.0 to 3.1] and survival without need for mechanical ventilation at day 14 (HR 0.58 [0.30 to 1.09]). There was an improvement in the secondary composite endpoint of high-flow oxygen, non-invasive ventilation, mechanical ventilation, or death at the 90% confidence level (0.58 with 90% CrI of 0.33-1.00). (Hermine 2020).

Two RCTs selected patients for hyperinflammation; both were negative. The Roche sponsored American BACC Bay Tocilizumab Trial randomized 243 patients in a 2:1 ratio to tocilizumab or placebo. Patients with hyperinflammation such as CRP > 50 mg/L or ferritin > 500 ug/L not yet intubated were eligible. (Stone 2020). The primary outcome was intubation or death. At 14 days, 18.0% of the patients in the tocilizumab group and 14.9% of the patients in the placebo group had worsening of disease. The Italian RCT-TCZ-COVID-19 Study group randomized 126 patients in a 1:1 ratio to tocilizumab or placebo (Salvarani 2020). Patients with an inflammatory phenotype (fever, CRP > 100 mg/L, etc) were eligible. The primary endpoint was admission to ICU or requirement for mechanical ventilation and 28.3% of the patients in the tocilizumab arm and 27% of patients in the standard care group showed clinical worsening.

Further information on long term outcomes is expected from these trials.

REMDACTA is the last large sponsored clinical trial enrolling, which is a randomized double-blind, placebo-controlled trial of tocilizumab vs. placebo in patients with severe COVID-19 getting 10 days of remdesivir (NCT 04409262). It is also sponsored by Hoffmann-Roche.

In summary, while early non-randomized trials suggested a benefit of IL-6 blockade in COVID-19, subsequent RCTs have failed to meet their primary endpoints, and hence IL-6 blockade cannot be recommended for use in the absence of convincing RCT data.
Convalescent Plasma

Recommendation:
Convalescent plasma is not recommended for treatment or prophylaxis of COVID-19 outside of approved randomized-controlled trials.

Convalescent plasma for treatment of COVID-19 warrants further study. We support the Canadian Blood Services in their initiatives to evaluate convalescent plasma and promote health authority partnerships in clinical trials, if locally feasible.

Convalescent plasma treatment refers to the process of drawing plasma, containing antibodies from patients who have recovered from a viral illness and administering that plasma to a patient infected with the illness. Also referred to as passive immunization, convalescent plasma has been used for over a century as an attempted treatment for a variety of infectious diseases including the Spanish Flu of 1918, Ebola and SARS. The use of CP as a treatment for COVID-19 was approved by the US Food and Drug Administration on March 25, 2020 as an emergency investigational new drug. In Canada, CP therapy for COVID-19 is currently available only as an investigational drug treatment for participants in the CONCOR-1 clinical trial. The CONCOR-1 clinical trial is currently underway and involves more than 50 hospitals across Canada with the intention to recruit 1,500 participants; however due to the lack of donors Island Health does not currently have any study sites. A unit of CP is estimated to be approximately $700-1000 CND.

Human Data

The largest support for the use of convalescent plasma to date comes from a large uncontrolled observational cohort study of 35,000 US patients who received CP treatment as part of the Expanded Access Program (EAP) that has led to its wide-spread use.

EAP COVID-19 Plasma Consortium:

- 35,322 patients 18 years or older with laboratory-confirmed COVID-19 who received at least one dose of convalescent plasma were observed as part of the EAP led by the Mayo Clinic and the National Institute of Health
- All eligible patients under this program from April 4, 2020 to July 4, 2020 were included in the analysis. There was no placebo, but different groups of patients were compared to each other on the basis of:
 - The month they received the CP (patients early on in the program tended to receive CP later in the disease)
 - Antibody titers achieved post-transfusion
 - 7- and 30-day mortality was assessed and comparisons were made between groups on the basis of timing of the CP (3 days or fewer vs. over 3 days) and IgG titers

- 52.3% of patients were critically ill in the ICU at the time of plasma transfusion; patients needed to be “severely ill” or at “high risk of progression” by the treating team to be considered for CV.
- Patients received one 200ml unit of CV with additional doses permitted if they were justified
- The study reported that 7-day mortality rate was 8.7% [95% CI 8.3%-9.2%] in patients transfused within 3 days of COVID-19 diagnosis but 11.9% [11.4%-12.2%] in patients transfused 4 or
more days after diagnosis (p<0.001). Similar findings were observed in 30-day mortality (21.6% vs. 26.7%, p<0.0001).
- The study also reported a trend towards lower mortality on the basis of plasma IgG concentrations. (8.9% vs. 11.6% vs. 13.7% for those receiving high, medium or low IgG plasma), p<0.048.

The results of this yet to be published study are difficult to apply due to the uncontrolled nature of the design. While the mortality benefit in those who got CP earlier and received more IgG containing products is promising, this result is prone to innumerable sources of confounding. One is the trend of faster administration of CP as the pandemic progressed, which could have been due simply to a better understanding of the disease and lower admission rates later in the study period. While adjustments were made for different covariates such as age, gender, receipt of remdesivir or steroids, the number of covariates possible makes this analysis difficult to justify. It is also impossible to determine how CP impacts mortality when compared to no treatment, as opposed to simply being compared to a different product and timing of administration. As such, we agree with the study authors that the results of the EAP can be used as an exploratory analysis but not as definitive support for the use of CP.

Besides a recent RCT, there are two case reports, a retrospective case series (n=5), and a prospective cohort study (n=20) that have been published evaluating CP for the treatment of COVID-19. Results from these studies on mortality are mixed with the RCT showing no benefit. While viral clearance appears to be faster, CP does not appear to have any effect on duration of illness or hospital length of stay.

Li et al. 2020: A randomized unblinded controlled trial of hospitalized patients at 8 Chinese hospitals

- 103 patients with a positive COVID-19 PCR exhibiting severe (requiring O₂) or life-threatening (requiring ICU admission) symptoms were randomized to CP (N=52) and control (N=51).
- There were no significant difference in baseline characteristics and illness factors between groups but many patients received antivirals, herbal medicines and other unproven therapies
- CP was given at a mean volume of 200ml with a Ig-G titer of 1:1280
- The primary outcome was time to clinical improvement within 28 days, defined as either discharge from hospital or a 2 point improvement on a 6 point clinical scale; secondary outcomes were mortality, time to discharge and viral clearance
- There was no significant difference in mortality for all patients (CP=15.7% vs control=24%) irrespective of disease severity; there was also no difference in overall rates of clinical improvement or length of stay
- Patients who were severely ill (but not those with life-threatening disease) had a shorter time to clinical improvement (13 vs. 19 days; p=0.03). There were also higher rates of viral clearance at various time points (e.g. 87.2% for the CP group at 72 hours vs. 37.5% for control)
- The study attempted to recruit 200 patients but could not due to diminishing cases which likely lead to inadequate power to detect a difference in outcomes

Zeng et al 2020: A case series of 21 patients from two Chinese hospitals of whom 6 received CP therapy and 15 were used as controls

- All patients had severe COVID-19 and were admitted to the ICU
- Mean volume of CP given was 300ml; the volume given was not standardized or specified. Some patients received multiple doses for unknown reasons
Outcomes were mortality, hospital discharge, ADRs and viral clearance

The study reported no difference in mortality between groups (83.3% vs. 93.3%). The extremely high mortality raises questions to the generalizability of the results

There are various methodological issues with this study leading to poor quality, including observational nature, small sample sizes, lack of power calculations, lack of adjustment for confounders and no standardized CP dosing

Shen 2020: Case series of five critically ill patients in China requiring mechanical ventilation (one requiring ECMO).

- Patients received convalescent plasma from 5 recovered patients with Ig-G binding titers > 1:1000 on day 10 (N=1) or 20 (N=4) of their hospitalization
- All showed significant clinical improvements 2-4 weeks after receiving therapy in temperature, SOFA score, PaO2/FiO2, viral loads, neutralizing antibody titers and imaging findings
- ARDS resolved in 4/5 patients
- 3/5 patients weaned from mechanical ventilation within 2-weeks
- 1 patient on ECMO was weaned on day 5 post-transfusion
- As of Mar 25: 3/5 patients discharged; 2/5 patients in hospital in stable condition

Roback 2020 followed the Shen 2020 study by an editorial discussing the feasibility and limitations of using convalescent plasma. Some important limitations noted included the lack of a control group, use of multiple other therapies like steroids and antivirals and lack of clarity regarding optimal timing for plasma administration. The editorial also proposed several considerations that would need to be addressed to enable scaling convalescent plasma therapy to meet demand: These included strategies for donor recruitment, sample retrieval and storage, patient transfusion logistics and use of predictive modeling to manage donors and recipients. While useful, this editorial highlights the practical challenges of routine administration of convalescent plasma.

Duan 2020: Prospective feasibility pilot of 20 patients in 3 Wuhan hospitals; 10 treated with convalescent plasma (200ml with neutralizing antibody titer > 1:640) and 10 matched controls

- Study reports significantly improved clinical and radiographic markers with all 10 treated patients having de-escalation or cessation of respiratory support therapy.
- Cases were compared to a control group of 10 randomly selected patients from the same hospitals and matched by age, gender and disease severity.
- All patients also received maximal supportive therapy and antiviral therapies.
- Compared with the control group, the group treated with convalescent plasma had significantly higher oxygen saturation (median 93% vs 96%) and a higher number of improved/discharge patients. Due to the small sample, the differences were not statistically significant.
- There were no significant morbidities and mortalities associated with convalescent plasma.
- Limitations include use of concomitant therapies, lack of details regarding clinical outcomes, and the lack of power.

Finally, two news articles discussed individual critically ill patients (a 69 year-old female and 74 year-old female) from China who experienced clinical improvement after receiving convalescent plasma therapy.

Other viral illnesses

There is low-quality evidence, primarily observational/retrospective uncontrolled case series with small sample sizes reporting benefit for convalescent plasma use in severe viral respiratory illnesses. The
Therapies for COVID-19
UPDATE: December 18th, 2020

Majority of the evidence is derived from treatment of SARS, with a two studies in H1N1 influenza. Some data suggests that early administration of convalescent plasma confers more benefit than delayed administration, possible due to suppression of viremia and avoidance of the immune hyper-activation. Overall, little meaningful conclusions can be drawn from these studies due to their limitations.

Soo 2004: A small retrospective cohort of convalescent plasma compared to increased doses of corticosteroid for 40 patients infected with SARS who deteriorated despite ribavirin and lower-dose steroids showed that those who received convalescent plasma group had a lower chance of death (N=0 vs. 5, NS)

Cheng et al 2005: 80 patients with SARS who had deteriorated despite standard treatment which included antibiotics, ribavirin and corticosteroids were given convalescent plasma. The study found that the mortality rate in these patients was 12.5% compared to historically documented SARS mortality of 17% in Hong Kong. The study noted that administration of plasma earlier in the disease course, particularly prior to day 14 had more impact in mortality vs. later administration (6.3% mortality vs. 21.9%).

Yeh 2005: Three health-care workers with SARS in China all received convalescent plasma and all survived. A similar 3-person case series of MERS patients by Ko et al, 2018, also administered convalescent plasma and reported treatment success.

Two studies by the same authors, Hung 2011 of H1N1 patients comprise the most robust support for convalescent plasma; however must be interpreted with caution as generalizability to COVID-19 may be limited. In 2011, 93 pts w H1N1 who required ICU-level care, were given convalescent plasma vs. supportive care in a non-randomized fashion. Supportive care was not defined. Plasma group had lower mortality (20% vs 55%) which was stated to be statistically and clinically significant. A follow-up study two years later in 2013 with improved methodology was conducted. This multicenter prospective double-blind RCT evaluated fractionated to hyperimmune IV immunoglobulin (H-IVIG) donated by 2009 H1N1 survivors vs. IVIG from patients not previously infected. While viral loads were lower in the treatment group, a subgroup analysis found a mortality benefit only for patients who received the H-IVIG with H1N1 antibodies within 5 days of symptom onset.

Summarizing the data published on convalescent plasma for the treatment of MERS, two reviews concluded that while studies are promising, no definitive recommendations can be made due to lack of properly conducted clinical trials (Mustafa 2018, Mo 2016). A systematic narrative review that combined 8 observational trials of SARS and H1N1 patients by Mair-Jenkins 2015 showed improved mortality after convalescent plasma but is flawed by the low or very low quality of included studies and an inability to combine outcomes numerically.

There are several additional studies that are less relevant in this assessment, for example those evaluating treatment in conditions such as Ebola, rubella, hepatitis A and viral myocarditis which were not reviewed or considered.

In addition to the inherent risks associated with blood product utilization there are theoretical risks specific to convalescent plasma therapy. Antibody dependent enhancement (ADE) results in the enhancement of the target disease in the presence of the antibodies given. There is also the possibility of attenuation of the natural immune response. The most common side effects of treatment with convalescent plasma are minor transfusion related reactions (urticaria, febrile non-haemolytic
transfusion reaction and pruritis). Reported rates for these minor complications range from 10-70%. One RCT investigating high vs. low-titre influenza plasma reported 34% of patients experiencing a serious adverse event including ARDS and respiratory distress.

Overall, convalescent plasma poses a potential treatment option that warrants further investigation for the treatment of COVID-19. The Canadian Blood Services has stated that plans for clinical trials across Canada, with collaboration with the Canadian clinical research community are underway. The U.S. Food and Drug Administration (FDA) announced on April 1, 2020 that it would allow clinical trials for using convalescent plasma to treat COVID-19 and expedited product approval. The treatment has already begun testing in New York. Once more evidence becomes available, a careful consideration regarding the feasibility of large-scale treatment with blood products for this disease in conjunction with risks and costs will need to be undertaken.
Intravenous Immunoglobulin G (IVIG)

Recommendation:
Intravenous immunoglobulin G (IVIG) is not recommended for treatment or prophylaxis of COVID-19 outside of approved randomized-controlled trials.

IVIG is pooled from human plasma of several thousand donors and used in the treatment of a large number of heterogeneous indications, including primary and secondary immune deficiency states and various autoimmune and inflammatory disorders. IVIG has several potential anti-inflammatory and immunomodulatory effects including provision of neutralizing antibodies to microbial toxins, altering regulatory T-cells and affecting the complement system. In the field of infectious diseases, IVIG has been used as adjunct treatment to manage secondary complications of bacterial and viral illness, for example in treatment of neuroimmunologic disorders like Guillain-Barré syndrome or toxin-mediated shock.

Specific to COVID-19, various suggestions have been made that IVIG may play a role as salvage therapy for cytokine storm and related complications such as myocarditis. Thus far, while many commentaries exist, there are two case reports that describe the use of IVIG specifically for COVID-19.

Cao 2020 published the first case series of three patients who were given salvage treatment for COVID-19 in Wuhan, China.

- Three patients who were deteriorating in hospital were given high dose IVIG (25g/day x 5 days).
- Average administration was 10 days after symptom onset.
- The case report states all patients improved clinically and radiographically 2-7 days later; however few specific details were given.
- Patients received concomitant therapy with antivirals, steroids and antibiotics.

Hu 2020 described a single patient who received IVIG for myocarditis caused by COVID-19.

- A 39-year-old male presented with an enlarged heart, pleural effusions and an elevated troponin and proBNP
- He received methylprednisolone and IVIG 20g/daily for 4 days, along with cardiac medications and antibiotics.
- The report stated that he improved within a week of admission.

Even though the evidence is limited, concerns have grown over the desire to use IVIG as a last resort therapy to those who are deteriorating. This is compounded by dwindling supply of IVIG during the pandemic, leading to a greater need to steward its use to those who have valid indications.
Monoclonal Antibodies and Antibody Cocktails

Recommendation:
Monoclonal antibodies (e.g. bamlanivimab), and antibody cocktails (e.g. REGN-COV2) are not recommended for treatment or prophylaxis of COVID-19 outside of approved randomized-controlled trials.

Bamlanivimab

Bamlanivimab (initially called Ly-CoV555) is a monoclonal antibody against the Sars-CoV-2 spike protein that blocks viral entry and subsequent replication. The investigational mab has received attention after the publication of the Phase 2 trial (Blaze-1) that evaluated its impact on viral load and selected clinical endpoints.

- A phase 2 randomized double-blind placebo-controlled trial of 452 outpatients with diagnosed mild to moderate Covid-19
- Mild-moderate disease was defined as symptoms of Covid-19, including cough, fever, malaise and shortness of breath, but not requiring oxygen support or hospitalization
- Patients were diagnosed by an NP swab and randomized and treated at an outpatient clinic within 72 hours of a positive Covid-19 test
- Patients were randomized into 4 groups: bamlanivimab 700mg (initial optimal dose determined after a Phase 1 trial, N=101 patients), 2800mg (N=107 patients), 7000mg (N=101 patients) and placebo (N=150 patients)
- The primary endpoint was reduction in viral load, determined using RT-PCR performed on specimen from NP swabs, at a pre-specified analysis time point of day 11 after receiving the study drug
- Secondary outcomes included safety data, symptom scores using an 8 question questionnaire and a composite endpoint of hospitalization, emergency room visit and death
- Analysis of data was based on an intention to treat. No adjustments were made for multiplicity.
- While 69% of patients had other risk factors that could increase their risk for developing severe Covid-19 (e.g. obesity, one co-existing illness), the majority of patients were young (average age 45 years) and with mild illness only (79%).
- Primary outcome: by day 11, all patients, including those receiving placebo, had a log viral load reduction by -3.81, which corresponded to a 99.9% elimination of the viral load
- Pooled analysis of all three doses of bamlanivimab was not statistically significantly different from baseline. Only the 2800mg dose had a statistically significant impact on viral load over placebo (-0.53, CI -0.98 to 0.08), where the 700mg and 7000mg doses did not.
- Secondary outcomes of hospitalization/emergency room visits at day 29 were reported to be lower in those who received bamlanivimab (5 of 309 patients vs. 9 of 143 patients, 1.6% vs. 6.3%), however no statistical analysis was reported on this outcome. It is impossible to determine whether this difference is statistically significant as the pre-planned logistic regression was not performed and cannot be done through critical appraisal using only the aggregate data reported. It is unclear whether this outcome was driven by emergency room visits, hospitalizations or both
● Symptom scores were taken daily for 11 days, and were not statistically significant at most time points with the exception of day 4. Most patients had only mild illness.

● Safety endpoints were explored and overall no serious ADRs were reported, however patients in the bamlanivimab group had a higher rate of allergic and infusion reactions than placebo (2.3% vs. 1.4%). The manuscript noted that no infusions had to be discontinued, however in the nomogram submitted to Health Canada for review, it was noted that in the Phase 1 trial there were 2 serious infusion reactions (1 anaphylaxis and 1 other serious reaction) that required significant intervention. For this reason, the Blaze-1’s protocol required a 2 hours post infusion observation period with treatment on stand-by.

The trial’s results, while potentially hypothesis generating, cannot be used to guide clinical decisions regarding the role of this drug, and further study is required. A reduction in viral load is insufficient evidence to warrant the use of bamlanivimab, particularly since it was not observed in all treatment groups, and not statistically significant overall. While the lower hospitalization rates are promising, as a secondary outcome with no statistical analysis, it too is hypothesis generating at this time. Blaze-2, a trial looking at the efficacy of bamlanivimab in preventing Covid-19 in patients exposed to Covid-19 in long term care facilities is currently enrolling, and may be better suited to define a niche for its use.

Significant pragmatic concerns have also been brought forward by the medical community regarding the operationalization of administering bamlanivimab as per the trial’s protocol. Patients who recently test positive for Covid-19 need to be admitted to medical daycares or facilities able to administer IV medications, posing a significant risk by increasing health care exposure to the virus. Three hour infusions and short stability at room temperature, combined with a significant observation and monitoring period put additional strain on health care workers and resources. Furthermore, the safety of the drug in light of serious reactions observed in the Phase-1 trial has been brought to question, and requires additional evaluation.
Antibiotics

Recommendation:
Antibiotics should be initiated based on local institutional antibiograms and sensitivities if bacterial infection is suspected.

Initial Therapy
As with any viral pneumonia, COVID-19 itself is not an indication for antibiotics. However, patients who present with respiratory symptoms and pulmonary infiltrates on imaging may meet the diagnostic criteria for pneumonia. Co-infection with a bacteria pathogen can be possible, and as per standard CAP therapy, antibiotics are indicated. An example of standard therapy for in-patient treatment for community acquired pneumonia is ceftriaxone 1-2 g IV daily with a macrolide, usually azithromycin 500mg IV/PO x 3 days or azithromycin 500mg PO x 1 day followed by 250mg PO x 4 days. While patients infected with COVID-19 may have travel history or have come in contact with travelers, extending the spectrum of antimicrobials is not warranted unless the patient has significant risk factors for drug-resistant organisms. This is generally limited to health-care exposure in an area with high rates of antibiotic resistance in the last 90 days. Such patients should obtain an Infectious Disease consult for tailored antibiotic therapy.

De-escalating antimicrobials is usually possible in confirmed COVID-19 infection. Procalcitonin is a useful marker and is usually negative. This can be combined with other clinical features like lymphopenia, normal neutrophil count and lack of positive bacterial cultures. Based on these tests, antibiotics might be discontinued in less than 48 hours.

Delayed Bacterial Infection
Hospital and ventilator-associated pneumonia can emerge during the hospital stay. Among patients who died from COVID-19, one series found that 11/68 (16%) had secondary infections (Ruan 2020). Hospital-acquired infection may be investigated and treated according to current VAP/HAP guidelines.
Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

Recommendation:
Acetaminophen is recommended preferentially for symptomatic management of COVID-19 but do not recommend against the use of NSAIDs such as ibuprofen.

On March 17, the World Health Organization recommended NSAIDs should be avoided for treatment of COVID-19 symptoms, after French officials warned that anti-inflammatory drugs could worsen effects of the virus. The warning by French Health Minister Olivier Veran followed a recent study in The Lancet medical journal that hypothesised that an enzyme boosted by anti-inflammatory drugs such as ibuprofen could facilitate and worsen COVID-19 infections. After two days of contemplation, the WHO reissued a statement on Twitter stating that there is no specific reason to avoid NSAIDs based on this data.
Angiotensin Converting Enzyme (ACE) inhibitors and Angiotensin Receptor Blockers (ARBs)

Recommendation:
Patients on ACE inhibitors and ARBs are recommended to continue these agents as indicated and not cease therapy solely on the basis of COVID-19.

COVID-19 uses the ACE2 enzyme to gain entry into human cells, and some reports state that those taking ACE-inhibitors or ARBs may experience an up-regulation of these enzymes. Theoretically, patients taking these medications may have increased susceptibility to the virus; however, this has not been shown clinically. Conversely, it has also been hypothesized that ACE2 may have a protective effect through generation of angiotensin (1-7), which causes vasodilation. A murine model found that ACE2 down regulation by SARS-CoV worsened lung injury, which improved with treatment of an ARB (Patel 2020). Various expert groups such as the Canadian Cardiovascular Society and Hypertension Canada issued statements that uncontrolled hypertension or heart failure for which these medications are used would put patients at increased risk of poor outcomes due to COVID-19 and recommended that these agents not be discontinued.

Findings from observational studies to date found no association between ACE inhibitors or ARBs and risk of COVID-19 infection or clinical outcomes:

Zhang 2020-04-17: A retrospective, multicentre study from 9 hospitals in Hubei Province, China included 1128 adult patients with hypertension diagnosed with COVID-19.

- Investigated the association of mortality with ACE-I/ARB users in hypertensive patients hospitalized with COVID-19
- Mortality 3.7% (7/188) in ACE-I/ARB and 9.8% (92/940) in Non-ACE-I/ARB groups, p=0.01.
- ACE-I/ARB group had higher percentage of antiviral use (88.8% vs. 81.7%; p=0.02) and lipid-lowering therapies (22.9% vs. 10.0% p=1.51E-6).
- Propensity score-matched analysis found lower risk of all-cause mortality in ACE-I/ARB vs. non-ACE-I/ARB (HR, 0.37; 95% CI, 0.15-0.89; p=0.03), however absolute number of deaths small in ACE-I/ARB group.
- Low number of ACE-I/ARB users and deaths relative to non-ACE-I/ARB group, therefore did not have power to detect difference between ACE-I and ARB groups.

Reynolds 2020-05-01: a population-based analysis of 12,594 patients who were tested for Covid-19 in New York Langone Health network

- Assessed association between prior treatment with ACE-I, ARBs, beta-blockers, calcium-channel blockers (CCBs), or thiazide diuretics and risk of testing positive for Covid-19 and for severe illness (intensive care, mechanical ventilation or death) within all tested patients and those with hypertension
- Clinically meaningful difference defined as 10 percentage point difference in likelihood of testing positive between those on the antihypertensive and those without
- Among total patients tested, 5894 (46.8%) tested positive; a total of 4357 (34.6%) had a history of hypertension, and of those 2573 (59.1%) tested positive for Covid-19
In the unmatched analysis, several medication classes including ACE-I and ARBs were associated with a higher likelihood of testing positive for Covid-19.

In the analysis that matched medication use and non-medication use in all Covid-19 tested patients as well as analysis that were matched in those with hypertension only, the likelihood of testing positive was greatly reduced and not clinically meaningful in those on medications for all antihypertensive classes.

Mehra 2020-05-01: A retrospective cohort analysis included 8910 hospitalized patients with COVID-19 from 169 hospitals across 11 countries in Asia, Europe and North America.

- 515 of 8910 (5.8%) died in hospital; no increased risk of in-hospital death associated with ACE-I users 2.1% vs. 6.1% (OR = 0.33; 95% CI, 0.20 to 0.52) or ARB users 6.8% vs. 5.7% (OR = 1.23; 95% CI 0.87 to 1.74).
- Multivariable logistic-regression model found age > 65 y.o., CAD, CHF, cardiac arrhythmia, COPD and smoking status were associated with higher risk of in-hospital death.
- Tipping-point analysis to assess potential effect of unmeasured confounders found an unobserved binary confounder with prevalence of 10% in study population would need OR ≥ 10 for either ACE-I or statins to have 95% CI crossing OR of 1.

Mancia 2020-05-01: A population-based case-control study in Lombardy region of Italy of 6272 COVID-19 cases matched with 30 759 controls.

- Investigated the association between ACE-I and ARB users with risk of COVID-19 diagnosis in beneficiaries of the Regional Health Service (≥ 40 y.o.)
- For each case patient, ≤ 5 controls were randomly selected from target population matched for sex, age at index date and municipality of residence.
- Larger percentage of case patients used ACE-I (23.9% vs. 21.4%) and ARBs (22.2% vs. 19.2%) compared to controls. CCBs, B-blockers and diuretics were also used more frequently.
- After multivariable adjustment, neither ACE-I or ARBs had a significant association with risk of COVID-19.
- Mild-moderate and severe infection (need for ventilation or death) were not associated with ACE-I or ARB use.

There are currently 4 clinical trials ongoing examining losartan in adult patients with COVID-19 in both outpatient and hospital settings on mortality, ICU admission, hospitalization and length of hospitalization (NCT04340557, NCT04311177, NCT04335123, NCT04312009).
Venous Thromboembolism (VTE) prophylaxis

Recommendation:
Enoxaparin 30 mg SC bid is suggested as the preferred dose for VTE prophylaxis in critically ill patients with COVID-19. Enoxaparin 30 mg SC bid should be considered for VTE prophylaxis in hospitalized ward-based patients with COVID-19. This dose was selected to reduce incident VTE and potentially save health care resources with patient transport and minimize risk of COVID-19 transmission to staff and others. Suggest even higher doses of enoxaparin for hospitalized patients with weight above 100 kg or BMI above 40 kg/m².

All hospitalized patients with COVID-19 should receive pharmacologic VTE prophylaxis, unless contraindicated. This is consistent with statements from the American Society of Hematology as of May 18, 2020. Currently, the standard VTE prophylaxis regimen in BC is enoxaparin 40 mg SC daily. In specific populations (e.g. orthopedic trauma and spinal cord injury patients), enoxaparin 30 mg SC twice daily is commonly used. The potential benefits with a higher daily dose of prophylactic anticoagulation include greater protection from venous thromboembolism and, in turn, a lesser need for confirmatory radiologic procedures. This would result in reduced use of healthcare resources with patient transport and also lessen the risk of staff exposure and equipment contamination with COVID-19.

The half-life of enoxaparin based on anti-Xa activity is 4 to 6 hours; accordingly, twice daily dosing aligns with the pharmacokinetics. From a logistics perspective, once daily dosing is more likely to be missed which would result in a patient unprotected for over 24 hours whereas twice daily administration ensures the evening dose is given even if the morning dose is held for procedures. Enoxaparin 30 mg bid dosing has shown to have similar bleeding risk as heparin 5000 units bid in orthopedic trauma patients and in spinal cord injury patients (Geerts 1996, SCI Investigators 2003).

Recently, a Canadian trial led by St. Michael’s Hospital has been designed to evaluate the optimal prophylactic regimen in non-ICU COVID-19 patients. The RAPID COVID COAG study is a pragmatic, randomized, controlled trial of therapeutic coagulation vs. standard of care of non-critically ill hospitalized patients with D-dimer elevated above two times the upper limit of normal. The primary objective of the study is to evaluate whether full-dose, therapeutic anticoagulation with LMWH or UFH in those with laboratory risk factors can prevent the development of critical illness, VTE and reduce mortality.

Rates of VTE in general hospitalized patients with COVID-19 are expected to be similar to patients with inflammatory disorders or sepsis. Severe COVID-19 infections appear to present with a hypercoagulable state although the incidence of acute VTE remains uncertain and varies between publications. Based on observational data, severe thrombocytopenia is uncommon from COVID-19 while D-dimer levels are typically elevated (above 500 mcg/L) in 50% of COVID-19 patients (Guan 2020-02-28), reflecting inflammation and/or infection. Coagulopathy from disseminated intravascular coagulation is seen in severe advanced disease, with associated high mortality. One study of 191 patients from Wuhan, China reported a strong association between elevated D-dimer levels above 1000 mcg/L and mortality (Zhou 2020-03-28). This finding is limited by the study’s small sample size, lack of adjustments for multiple comorbidities, and wide confidence interval.
A small study of 81 patients from China noted that 25% of patients developed lower extremity VTE; however, use of pharmacologic prophylaxis was not reported (Cui 2020-04-09). In this study, risk factors for incident VTE included older age, elevated PTT, and elevated D-dimer. A cohort of 184 ICU patients with COVID-19 from the Netherlands showed incidence of thrombotic events (VTE, ischemic stroke, myocardial infarction, or systemic embolism) occurred in 31% [95% CI 20 to 41%] and VTE in 27% [95% CI 17 to 37%] despite receiving standard VTE prophylaxis (Klok 2020-04-10). Predictors of thrombosis included older age, elevated PT, and elevated PTT.

Elevated D-dimer levels may reflect both a hypercoagulable state and underlying inflammation due to its nature as a non-specific acute phase reactant. Preliminary observational data suggest increased incidence of VTE events in critically ill patients; however, the available data is scant and VTE incidence may vary depending on institutional practice. There is no robust clinical evidence to support therapeutic full anticoagulation for treatment of COVID-19 in the absence of other compelling indications.

Although initial publication focused on VTE rates in critically-ill patients with COVID-19, recent studies have suggested that the risk of thromboembolism in patients admitted to the ICU far exceeds those admitted to the general ward. Generally, rates of VTE in ward patients appear to be similar to those without COVID-19, and intensified or therapeutic anticoagulation, at least thus far, has not been shown to be of further benefit in non-critically ill patients. As such, new evidence is pointing towards a varied approach dependant on illness severity.

The following sections summarize the currently available evidence for VTE rates and prophylaxis, stratified by disease severity in patients with COVID-19:

VTE in critically ill patients admitted to ICU

- The purpose of the study was to compare mortality for those that received VTE prophylaxis to those that did not.
- Only 99 (22%) patients received VTE prophylaxis for 7 days or more mainly with enoxaparin 40 to 60mg SQ daily.
- There was no difference in the primary outcome of 28-day mortality in the multivariate analysis between users of heparin and non-users (30.3% vs. 29.7%).
- In patients with the most elevated D-dimers (greater than 3 mcg/mL, or 6 times ULN), there was a difference in mortality between those that received VTE prophylaxis to those that did not (32.8% vs. 52.4%), but the raw number of patients in this category is not reported. It is not reported whether mortality was due to thrombosis.

Yin 2020-04-03: A subsequent analysis of the same 449 patients from Tang 2020-03-27, this time compared to 104 patients admitted with non-COVID pneumonia to the ICU.

- The mortality in the COVID-19 patients was 29.8%, compared to 15.4% in the non-COVID patients (p<0.01).
The same proportion of patients received VTE prophylaxis in the two groups (22% vs. 21.2%), for 7 days or longer.

As reported by Tang 2020-03-27, no difference in mortality was observed between those that received VTE prophylaxis to those that did not in both groups (30.3% vs. 29.7%; 13.6% vs. 15.9%).

Interestingly, the average D-dimer of non-COVID patients was higher than in COVID-19 patients, but the difference was not statistically significant (2.52 mg/L vs 1.94 mg/L). Other coagulation measures such as PT and platelet counts were no different.

Cui 2020-04-09: A retrospective study from Wuhan, China of the 81 patients admitted to a single ICU with severe COVID-19.

- Definition and detection methods of VTEs were poorly reported; 20/81 patients (25%) developed lower extremity VTEs.
- The study compared the 20 patients with VTE to the remaining 61 patients who did not develop VTE using simple statistics that did not adjust for covariates.
- Risk factors for VTE incidence was older age, elevated PTT and elevated D-dimer.
- 8 of 20 patients who developed VTE died, but no mortality outcome was reported for the total study population or those who did not develop thrombosis.
- The authors specifically stated that none of the patients received pharmacologic VTE prophylaxis, but discussed that patients with D-dimers over 3 mg/L received therapeutic anticoagulation for treatment of presumptive thrombus.

Klok 2020-04-10: Prospective cohort study in 3 Dutch hospitals of 184 patients admitted to the ICU for severe COVID-19.

- Composite outcome symptomatic PE, DVT, ischemic stroke, myocardial infarction, systemic arterial thrombosis: 31% (95%CI 20-41%)
- VTE confirmed by ultrasound or CT PE: 27% (95% CI 17-37%)
- All patients received LMWH prophylaxis with nadroparin at doses of 2,850 units SQ daily up to 5,700 units SQ BID based on weight.
- Note: Nadroparin 4000 units is equivalent to enoxaparin 40mg.
- Age, prolonged PT and PTT were independent predictors of thrombotic complications.
- The study concluded that the observed prevalence of VTE was alarmingly high and likely underestimated as events majority of patients still remained in ICU at time of writing.
- No other outcomes (for example mortality) were reported.

Helms 2020-04-22: A multicentre prospective cohort study in four ICUs in French tertiary care hospitals of 150 patients with COVID-19:

- 64/150 (42%) of patients had clinically relevant thrombotic complications (15% had segmental or larger PEs; the rest of the thrombotic complications included were subsegmental PEs, cerebral ischemic events, and extracorporeal circuit thrombosis).
- All patients received LMWH at 4,000 units per day (equivalent to enoxaparin 40mg/day) or if contraindicated, unfractionated heparin at 5-8 units/kg/hr (equivalent to 8,000 units to 13,500 units per day for a 70 kg patient).
- 28 of 29 patients (96.6%) receiving continuous renal replacement therapy experienced circuit clotting despite prophylaxis.
● As a secondary analysis, the study compared COVID-19 patients with ARDS (N=77) to those with ARDS due to other causes (N=145). Observed VTE was higher in those with COVID-19 (11.7% vs. 2.1%; p < 0.05).

Llitjos 2020-04-22: A retrospective study in 2 French ICUs of 26 patients screened for VTE with complete duplex ultrasound (CDU) between day 1 and day 3 of their ICU stay.

- 31% (N=8) were treated with prophylactic anticoagulation and 69% (N=18) were treated with therapeutic anticoagulation.
- The cumulative rate of VTE in patients was 69% (N=18). The proportion of VTE was significantly higher in patients treated with prophylactic anticoagulation when compared to the full anticoagulation group (100% vs 56% p=0.03).
- The generalizability and clinical relevance of the study is significantly reduced by inclusion of potentially asymptomatic VTE through wide-spread screening, particularly as most patients did not experience PE.

Poissy 2020-04-24: A case series in one French hospital of 107 patients admitted to the ICU for COVID-19.

- The cumulative rate of PE in patients was 20.4% (95% CI 13.1 to 28.7%) at day 15 of ICU admission.
- At the time of PE diagnosis, 20 of 22 patients were receiving prophylactic anticoagulation with either UFH or LMWH according to current guidelines and 2 of the 22 patients were receiving therapeutic anticoagulation for prior VTE and atrial fibrillation.
- By comparison, the authors matched cohorts from the same time interval in the previous year and one from concurrent patients with influenza rather than COVID-19 and the incidence of PE were 6% and 8% respectively.
- This study supports many others that suggest that VTE rates in critically-ill COVID-19 patients are higher than in those with non-COVID viral pneumonia.

Paranjpe 2020-05-05: A retrospective study of 2,733 patients with confirmed COVID-19 admitted to five New York City hospitals.

- 786 (28%) patients received therapeutic dose anticoagulation during their hospital course. The indication for therapeutic anticoagulation was not specified.
- Anticoagulated patients were more likely to require mechanical ventilation (29.8% vs 8.1% p<0.001) and 395 (14.4%) of patients were intubated and critically ill.
- Treatment with therapeutic anticoagulation was associated with a reduced risk of mortality with a HR 0.86 (95% CI 0.82-0.89)
- Bleeding was reported in 1.9% of patients not treated with anticoagulation vs. 3% in patients treated with therapeutic anticoagulation (p=0.2)
- Bleeding was more common among patients intubated 30/395 (7.5%) vs non-intubated patients 32/2378 (1.35%).
- While this study suggests that therapeutic anticoagulation may be of benefit, little can be drawn from these conclusions due to the weak study methodology. For example, it is unknown as to why patients were administered full-dose anticoagulation, and whether those in the comparator group also had indications for treatment. There were significant differences between groups.
which were not considered or adjusted for. In addition, the study did not comment on the significance of the higher bleeding risk in intubated patients.

- One commentary by Delanger-Patersen also pointed that the survival analysis is subject to an “immortal time bias” based on how the authors attributed T0 to those that were anticoagulated. T0 was the date of admission for those not anticoagulated and the start of anticoagulation for those in the treatment group. Since Initiation of anticoagulation was delayed by on average 5 days, the authors introduced “immortal person-time” among anticoagulation users thereby conferring an artificial survival advantage to the treatment group. This bias is also referred to as survivor treatment selection bias and can occur in survival analyses where patients who live longer are more likely to receive treatment than patients who suffer an early death. The results by Paranjpe et al. give the false illusion of improved survival among anticoagulation users when in fact ~25% anticoagulated patients were not at risk of death until after day 5 and all non-users were at risk from day 0.

Trigonis 2020-06-26: retrospective case series of a single center hospital in Indiana, USA of 45 patients admitted to the ICU for COVID-19

- included patients who required mechanical ventilation and were ordered lower extremity ultrasonography for detection of VTE
- mean age 60, BMI 34, 1 day from admission to intubation, 7 days from admission to ultrasonography
- all patients received pharmacologic prophylaxis and choice of prophylaxis did not affect rate of VTE; regimens included LMWH 40 mg q24h, LMWH 30 mg q12h, LMWH 40 mg q12h, UFH 5000 units q8h, and UFH 7500 units q8h
- 19/45 (42.2%) had DVT and these were detected after median 6 days (IQR 4 to 8 days) from admission
- D-dimers on date of ultrasonography was 5606 mg/L and 2274 mg/L in patients with and without DVTs, respectively
- authors suggested using D-dimer cutoff 2000 mg/L to trigger ultrasonography and 5500 mg/L to trigger empiric full anticoagulation based on sensitivity and specificity values
- limitations of this study included its retrospective nature, small sample size, and lack of standard prophylaxis doses; in addition, because only those patients who received ultrasonography were included, the overall rate of DVT found in this study likely overpredicts the rate of DVT for all critically ill patients with COVID-19

Parzy 2020-06-26: retrospective case series of a single center hospital in France of 13 patients on VV ECMO with COVID-19

- included patients with COVID-19 placed on VV ECMO and had a thoraco-abdominopelvic CT scan performed after decannulation
- compared COVID-19 patients to historic ECMO patients with influenza and bacterial pneumonia
- median days on ECMO was 10 (IQR 8 to 13)
- all patients were started on heparin infusions with anti-Xa heparin levels with target 0.3 to 0.6 units/mL (mean measured 0.41)
- all 13 patients experienced VTEs: 10/13 (76.9%) had isolated cannula-associated DVT, 2/13 (15.4%) had isolated PE, and 1/13 (7.7%) had both cannula-associated DVT and PE
● 7 patients had jugular DVTs, 10 patients had femoral DVTs, and 6 patients had both sites with DVTs
● 1 patient had thrombotic occlusion of the ECMO pump and 1 patient had oxygenator thrombosis, and 4 patients required circuit replacements
● numerically higher rates of cannula-associated DVTs in COVID-19 patients vs influenza patients

With the exception of few trials, the results of the above-mentioned studies do not directly compare the rates of VTE in the ICU with COVID-19 to those in the ICU for other reasons. As such, it is difficult to infer whether the observed high risk of VTE is due to COVID-19 alone, or variables such as differing standards of care, higher acuity of patients admitted to ICUs outside of Canada or lack of system capacity in a pandemic setting. To put these rates in a Canadian context, a landmark trial of VTE prophylaxis in 3764 critically ill patients (PROTECT 2011) is often cited as an indirect comparison. In this multicentre randomized trial, ICU patients received either dalteparin (5000 units SQ daily plus placebo once daily) or unfractionated heparin (5000 units SQ BID). At baseline, the average APACHE II score was 21, 90% were mechanically ventilated, 45% were on vasopressors, and 32% were on ASA. In both treatment arms, the rate of proximal leg VTE was 5-6% and PE was 1-2%. The rate of any VTE was 8-10%. These rates give insight into the expected baseline prevalence of VTE in ICU patients on prophylaxis locally, and appear lower compared to the rates currently published for critically ill COVID-19 patients.

VTE in non-critically ill patients admitted to the general ward

Published data characterizing the prevalence of VTE in patients outside of the ICU are sparse, and non-critically ill patients have not been the focus of many publications pertaining to COVID-19 and anticoagulation. Two studies make explicit comparisons between severely and non-severely ill patients, and are reviewed below. No society guideline or statement has made any discerning comments regarding patients based on severity of illness or location (ICU vs. ward). The following data can be applied to non-critically ill patients:

Middeldorp 2020-04-19: A single-center cohort study from the Netherlands of 198 hospitalized patients with COVID-19:

● 63% (N=124) were admitted to the ward and 39% (N=74) were treated in the ICU at some point during their hospital stay.
● All patients received intensified VTE prophylaxis with weight-based nadroparin (2,850 or 5,700 IU BID), which is equivalent to 30-60mg of enoxaparin BID.
● The primary outcome was objectively diagnosed, but not necessarily symptomatic VTE, which included PE, DVT and catheter-related thrombosis.
● ICU patients were more likely to be male and had higher D-dimers (2.1 mg/L vs. 1.1 mg/L).
● ICU patients were much more likely to be screened for asymptomatic VTE with doppler US than ward patients (34/74 of ICU patients vs. 18/124 ward patients).
● There were 33 (17%) VTEs identified; 22 (11%) were symptomatic and 11 (5.6%) were incidental.
● Of the 33 VTEs, 29 occurred in ICU patients and 4 in ward patients; ICU stay was independently associated with VTE risk, with a HR of 6.9 (95%CI 2.8-17).
● The study characterized the high prevalence of VTE in critically-ill patients despite intensified anticoagulation, and the much lower risk of VTE in ward-based patients.
Lodigiani 2020-04-23: A retrospective study of 388 patients hospitalized in a teaching hospital in Milan, Italy.

- 84% (N=326) of patients were admitted to the ward and 16% (N=62) to the ICU
- Thromboembolic events occurred in 9 patients in the ICU, but only in 21 of ward patients. Precise rates for using the 388 study patients could not be calculated as cases that were still in hospital were not considered “closed” and not included in the primary outcome. The cumulative rate was reported as 27.6% in the ICU population and 6.6% in the ward population.
- Approximately half of the events were arterial thromboembolism (stroke and ACS), and half were VTE
- All patients in the ICU were anticoagulated, while 75% of ward patients received thromboprophylaxis; regimens varied from full, intermediate and standard doses
- Of the 21 ward patients, 12 experienced VTE, 6 experienced stroke and 3 suffered an ACS
- Of the 21 ward patients with events, 6 received full anticoagulation, 7 were on intermediate doses, 4 were on standard doses and 2 were not anticoagulated
- There was no association with the dose of thromboprophylaxis received and the rate of venous or arterial thromboembolism
- The study confirms previous findings that the rate of thromboembolic events in the ICU is much higher than on the general wards, and the rates of VTE in these populations appear consistent with previously reported VTE rates. Enhanced anticoagulation regimens in ward patients do not seem to confer additional protection.

A similar study currently in press (citation pending) from the US produced similar results. Of 215 patients hospitalized with COVID-19, 16 had VTE events, and 15 out of 16 were critically ill patients in the ICU. 80.8% of patients received standard dose enoxaparin; the remainder of patients received therapeutic anticoagulation. All observed events occurred in patients receiving standard prophylactic doses of enoxaparin, suggestive that once daily dosing may not be sufficient for patients in the ICU, but that the incidence of VTE in ward patients is low and intensified enoxaparin dosing in this population is unlikely to make a clinically significant difference.

Based on the lack of representation of non-severely ill patients treated outside of the ICU, no conclusions about the risk of VTE and optimal anticoagulation regimens for such patients can be made. However, preliminary studies show that regardless of the regimen used, VTE rates in ward patients are much lower than in critically ill patients, and increasing the anticoagulation dose may not be warranted.

Post-discharge

While there are currently no studies specific to COVID-19 that evaluate the efficacy and safety of ongoing VTE prophylaxis post-discharge, two landmark trials are worth mentioning to round out the discussion. Both these studies preceded COVID-19; however they included patients with generalizable characteristics such as elevated D-dimers, infection and respiratory failure.

In 2016, the APEX trial (Cohen et. al) randomized 7513 patients hospitalized with acute medical illness to receive enoxaparin 40 mg once daily for 10±4 days plus oral betrixaban placebo for 35 to 42 days or enoxaparin placebo for 10±4 days plus oral betrixaban 80 mg daily for 35 to 42 days. The study employed an atypical statistical analysis plan where three pre-specified, progressively inclusive cohorts
were subsequently analyzed if no difference was found in the preceding analysis: patients with an elevated D-dimer level (cohort 1), then patients with an elevated D-dimer level or an age of at least 75 years (cohort 2), and finally all the enrolled patients (overall population cohort). The primary outcome of asymptomatic and symptomatic VTE or VTE-related death did not reach statistical significance in cohort 1 (6.9% in betrixaban group vs. 8.5% in enoxaparin group; p=0.054); however it was statistically significant for cohort 2 (5.6% vs. 7.1% p=0.03) and in the general population (5.3% vs. 7% p=0.0006). This difference was likely due to increased power from increasing inclusion as cohort 1 consisted of only 3870 of the 7513 patients in the overall population. A frequent critique of the study is that asymptomatic DVT comprised the majority of events, and that while a difference in major bleeding was not observed, bleeding rates were higher in the betrixaban groups if clinically relevant non-major bleeding was added (3.2% vs. 1.7% p<0.001). This study led to FDA approval of betrixaban for VTE prophylaxis in the US, but not in other countries.

Following APEX, a second trial (MARINER) evaluating post-discharge prophylaxis was published in 2018. In this study, 12,024 hospitalized patients with an increased VTE risk were randomized to 45 days of rivaroxaban 10 mg daily or placebo following discharge. Patients received standard LMWH VTE prophylaxis during the index hospitalization, which lasted 3-10 days. There was no difference in the primary outcome of symptomatic VTE or VTE-mortality between groups (rivaroxaban 0.83% vs. 1.10%; p=0.14) and the study was stopped early due to futility. Major bleeding rates were similar. There was a reduction in symptomatic VTE with rivaroxaban (HR 0.44; 95% CI 0.22-0.89) though there were only 36 symptomatic thrombi among the >12,000 participants. The NNT to prevent one symptomatic VTE was 546. The findings of MARINER suggest that post-discharge provision of rivaroxaban for 45 days is of limited utility among medical patients at increased risk for VTE. The population included in this study parallels that of APEX: patients were on average 70 years old and most had elevated D-dimers. While this information is not specified in the APEX trial, about half of patients in the MARINER study had an encounter in the ICU.

While no direct comparisons have been made, patients with COVID-19 admitted to medical wards appear to have a symptomatic VTE rate similar to patients without COVID-19 (~1%). However, it is probable that patients with COVID-19 initially admitted to the ICU and discharged to the ward are at an increased VTE risk, and that the MARINER trial likely underestimates the benefit of continued anticoagulation despite including patients with a previous critical care admission. However, at this time the precise benefit vs. risk of post-discharge VTE prophylaxis in the setting of COVID-19 is unknown, and various issues such as lack of outpatient coverage for these agents pose barriers to routine implementation of this evidence.

Laboratory abnormalities in patients with COVID-19

Tang 2020-02-19: A retrospective study of characteristics of 183 consecutive patients with COVID-19 admitted to a hospital in Wuhan, China.
● While the proportion of ward vs. ICU patients was not stated, the study included “all-comers”, implying that non-ICU patients were captured.

● Anticoagulation parameter abnormalities were associated with mortality; however the results were not stratified by disease severity.

Zhou 2020-03-09: A retrospective study of all comers with COVID-19 admitted to 2 hospitals in Wuhan, China.

- 38% of patients (N=72) had “general” disease severity; 35% (N=66) were severely ill and 28% (N=53) were in critical condition. The qualifiers for these categories were not mentioned.
- None of the 72 patients with “general” disease died, while the mortality of the critically and severely ill patients was 66/119 (55%).
- While characteristics of survivors vs. non-survivors were reported; statistically significantly different variables between groups relevant to coagulation included a 0.8s shorter PT and a higher D dimer (5.2 mcg/mL vs. 0.6 mcg/mL). Since no patient with “general” disease severity died, it can be inferred that coagulation parameters are less likely to be abnormal in the non-severely or critically ill population, which are likely admitted to the ward.

Lippi 2020-03-13: A meta-analysis of baseline characteristic of COVID-19 patients from 9 studies from China and Singapore.

- 1779 patients were included and 77.6% (N=1380) had non-severe COVID-19, which was mainly defined as admission to an non-ICU ward, not receiving mechanical ventilation or absence of ARDS
- While the results were not consistent between studies, those with severe COVID-19 had lower platelet counts by 31 x 10(9) cells/L.
- A sub-analysis of 3 studies that included survival as an outcome showed that mortality was associated with a platelet drop; however it is not clear what proportion of ward-based patients was represented in this analysis.

Zhang 2020-04-19: A retrospective study of 343 patients to evaluate whether elevated D-dimer levels predict mortality in patients with COVID-19 in Wuhan, China.

- D-dimers were collected within 24 hours after admission.
- The average patient was 65 years old, 50% were female and 35% with underlying comorbidities (hypertension, diabetes, CAD).
- Patients with D-dimer levels >2 mcg/mL was a significant predictor of death (HR 51.5, 95% CI 12.9-206.7) with a sensitivity of 92.3% and a specificity of 83.3%.

Elevated D-dimer levels may reflect acute VTE however, this test is non-specific and can be elevated in a variety of other conditions (eg: malignancy, inflammatory conditions and infections). Preliminary observational data suggests there may be a correlation with elevated D-dimer levels and increased incidence of VTE in critically ill patients. Other data suggests high D-dimer levels (3-4 fold or >1000-2000 mcg/L) are associated with high mortality. Currently, there is no evidence to support therapeutic anticoagulation based on D-dimer levels in COVID-19 patients in the absence of other compelling indications.
SSRIs

Recommendation:
SSRIs are not recommended for treatment or prophylaxis of COVID-19 outside of approved randomized-controlled trials.

Lenze Ej et al. Fluvoxamine vs Placebo and Clinical Deterioration in Outpatients With Symptomatic COVID-19: A Randomized Clinical Trial. JAMA 2020

Background
- Sigma 1 receptor (S1R) is an endoplasm reticulum chaperone protein with various functions, including regulation of cytokine production
- Fluvoxamine, strong S1R agonist, inhibited cytokine production in a mouse septic shock model

Design
- DB, PC, RCT
- Single location (greater St Louis, in eastern Missouri & southern Illinois)
- Remote, contactless trial
 - Data collection via BID REDCap email surveys (phone was backup if no email)
 - Adverse events, compliance
 - Patient self-assessed vitals with equipment delivered
 - Daily phone calls x 3 days, then case by case basis
- 1:1 randomization
- Fluvoxamine 100 mg po tid vs matching placebo x 15 days
 - 50 mg qhs x 1 dose, then 100 mg BID x 2 days then 100 mg tid as tolerated through day 15
 - Followed by optional open label phase fluvoxamine 100 mg BID x 3 days, then 50 BID x 3 days then stop

Inclusion
- Outpatients 18 years and older
- Proven SARS-CoV-2 positive by PCR
- One or more active symptoms: fever, cough, myalgia, mild dyspnea, diarrhea, vomiting, anosmia, ageusia, sore throat
- Ability to provide Informed consent

Exclusion
- Severe illness requiring hospitalization or already meeting primary endpoint for clinical worsening (O2 sats < 92% on RA)
- Unstable comorbidities including but not limited to severe underlying lung disease (COPD, on home O2, ILD, pulmonary hypertension), decompensated cirrhosis, HF (NYHA 3 or 4 per patient report or medical records)
Therapies for COVID-19
UPDATE: December 18th, 2020

○ Immunocompromised (SOT, BMT, AIDS, on biologics or steroids equivalent to > 20 mg/day of prednisone)
○ Enrolled in another COVID 19 trial, or taking chloroquine, hydroxychloroquine, azithromycin or colchicine
○ Unable to provide consent (e.g. moderate to severe dementia)
○ Unable to perform study procedures.

Other

○ Research team evaluated concurrent prescription drugs, OTC meds and caffeine use to mitigate drug interactions.
○ Patients on SNRI/SSRIs included if they can be safely switched over to fluvoxamine briefly

Primary endpoint

○ Time to clinical worsening. Clinical worsening was defined as both: (1) presence of dyspnea and/or hospitalization for shortness of breath or pneumonia, plus (2) decrease in O2 saturation (<92%) on room air and/or supplemental oxygen requirement in order to keep O2 saturation >92%. Determined by phone discussion and review of medical records.

Results

○ 1337 screened, 181 randomized (14%) (834 excluded, 322 declined participation)
○ 152 (of 181) started the study and used for analysis (20 excluded, 9 didn’t start meds)
○ 35 patients in open label phase but no data collection
○ Mean age 46 years, 70% female, 70% white, majority (~80%) overweight or obese by BMI
 ○ Few comorbidities, asthma (~17%), HTN (~20%), DM (~11%). Few patients with depression/anxiety (~7%)
○ Median O2 sat 97% in both groups, range 92-99 in placebo group, 93-99 in fluvoxamine group
○ Clinical deterioration occurred in 0 of 80 patients in the fluvoxamine group and in 6 of 72 (8.3%) patients in the placebo group (absolute difference, 8.7% [95% CI, 1.8%-16.4%] by survival analysis, log-rank χ² = 6.8 and P 0.009
 ○ 4 of 6 hospitalized, one ventilated
 ○ 6 patients who deteriorated had baseline O2 sats less than/equal to 96%
○ Fluvoxamine – 1 serious adverse event (hospitalization for dehydration) and 11 other events, 6 serious and 12 other in placebo group
○ 20% patients stopped responding to surveys (18 patients on fluvoxamine, 19 on placebo) – concluded this was random
○ Within 30 days after day 15 (not pre-specified outcome) – one fluvoxamine admitted for headache, one placebo admitted for costochondritis

Limitations

○ Contactless (self-reporting, self measurements)
○ Predominantly young, few comorbidities. Oldest patient was 75 years old.
○ Unclear if everyone received target dose
○ Unclear how drug interactions, switching antidepressants were handled
 ○ But few patients with psychiatric illness in study
Short follow up

Conclusion

Preliminary findings, larger RCT needed
Recommendations

Corticosteroids
Dexamethasone 6 mg IV/PO q24h for up to 10 days is strongly recommended (RECOVERY trial), unless higher doses are clinically indicated.** Hydrocortisone 50 mg IV q6h is recommended as an alternative (REMAP-CAP trial). If dexamethasone and hydrocortisone are not available, methylprednisolone 32 mg IV q24h or prednisone 40 mg PO daily are recommended.

Remdesivir
Remdesivir has not demonstrated benefit in survival, progression to ventilation or length of hospital stay and remains uncertain with respect to shortening time to recovery by 5 days. The World Health Organization (WHO) has issued a conditional recommendation against the use of remdesivir in hospitalized COVID-19 patients. Further evaluation in approved clinical trials is strongly encouraged. If remdesivir is used outside of clinical trials, full disclosure of risks and benefits with consideration of patient values and preferences are necessary, as it is not considered standard of care. Furthermore, it should be restricted to hospitalized patients requiring supplemental oxygen but not requiring non-invasive or invasive mechanical ventilation.

Lopinavir / Ritonavir (Kaletra®)
Lopinavir/ritonavir is not recommended for treatment of COVID-19. Lopinavir/ritonavir is not recommended for prophylaxis of COVID-19 outside of approved randomized-controlled trials.

Chloroquine or Hydroxychloroquine
Chloroquine or hydroxychloroquine (with or without azithromycin) is not recommended for treatment or prophylaxis of COVID-19.

Oseltamivir
Oseltamivir is not recommended for treatment or prophylaxis of COVID-19.

Ribavirin and Interferon
Interferon IV/SC is not recommended for the treatment of COVID-19. Ribavirin/Interferon (Inhaled) is not recommended outside of approved clinical trials.

Colchicine
Colchicine is not recommended for treatment or prophylaxis of COVID-19 outside of approved randomized-controlled trials.

Ascorbic Acid and Vitamin D
Ascorbic acid and Vitamin D are not recommended for treatment or prophylaxis of COVID-19 outside of approved randomized-controlled trials.

Biologics/Small Molecules (Tocilizumab, Sarilumab, Anakinra, Baricitinib)
Biologics/Small Molecules (Tocilizumab, Sarilumab, Anakinra, Baricitinib) are not recommended for treatment or prophylaxis of COVID-19 outside of approved randomized-controlled trials.
Passive Immunotherapies (Convalescent Plasma*/IVIG/Monoclonal Antibodies/Antibody Cocktails)
Passive Immunotherapies (Convalescent Plasma*/IVIG/Monoclonal Antibodies/Antibody Cocktails) are not recommended for treatment or prophylaxis of COVID-19 outside of approved randomized-controlled trials.

Antibiotics
Antibiotics should be initiated based on local institutional antibiograms and sensitivities if bacterial infection is suspected.

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
Acetaminophen is recommended preferentially for symptomatic management of COVID-19 but do not recommend against the use of NSAIDs such as ibuprofen.

Angiotensin Converting Enzyme (ACE) inhibitors and Angiotensin Receptor Blockers (ARBs)
Patients on ACE inhibitors and ARBs are recommended to continue these agents as indicated and not cease therapy solely on the basis of COVID-19.

Venous Thromboembolism (VTE) prophylaxis
Enoxaparin 30 mg SC bid is suggested as the preferred dose for VTE prophylaxis in critically ill patients with COVID-19. Enoxaparin 30 mg SC bid should be considered for VTE prophylaxis in hospitalized ward-based patients with COVID-19. This dose was selected to reduce incident VTE and potentially save health care resources with patient transport and minimize risk of COVID-19 transmission to staff and others. Suggest even higher doses of enoxaparin for hospitalized patients with weight above 100 kg or BMI above 40 kg/m².

SSRIs
SSRIs are not recommended for treatment or prophylaxis of COVID-19 outside of approved randomized-controlled trials.

Other investigational therapies
Other investigational agents including arbidol, ASC09, azvudine, baloxavir marboxil/favipiravir, camostat mesylate, darunavir/cobicistat, camrelizumab, famotidine, ivermectin, niacin, thymosin, natural health products, and traditional Chinese medicines are not recommended for treatment or prophylaxis of COVID-19 due to lack of data, lack of availability, or both.

Denotes that a clinical trial of named therapy is currently planned or underway in British Columbia. Links below for registered trials in Canada and British Columbia.
Canada: https://www.canada.ca/en/health-canada/services/drugs-health-products/covid19-clinical-trials/list-authorized-trials.html
British Columbia: https://bcahsn.ca/covid-19-response/inventory/

*Recommendations are consistent with guidelines from the World Health Organization (WHO), the Surviving Sepsis Campaign (SSC) (a joint initiative of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM)), the Public Health Agency of Canada (PHAC), the Canadian Critical Care Society (CCCS), the Association of Medical Microbiology and
Infectious Diseases Canada (AMMI), and The Australian and New Zealand Intensive Care Society (ANZICS)
Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Affiliations</th>
</tr>
</thead>
</table>
| Dr David Sweet MD (Chair) | Critical Care Physician, Vancouver General Hospital & Clinical Lead for Sepsis, BCPSQC
[relevant conflicts of interest and/or financial disclosures listed below]
-Co-Investigator for CAVEAT (VCHRI funded)
-Co-Investigator for ARBs CORONA I (CIHR funded)
-Co-Investigator for ARBs CORONA II (CIHR funded) |
| Dr Kevin Afra | Antimicrobial Stewardship Physician, Fraser Health Authority
Chair of Provincial Antimicrobial Stewardship Clinical Expert Working Group (PACE)
[no relevant conflicts of interest or financial disclosures] |
| Dr John Boyd MD | Critical Care Physician, St Paul's Hospital
[conflicts of interest and/or financial disclosures pending] |
| Dr Piera Calissi | Antimicrobial Stewardship Pharmacist, Interior Health Authority
Provincial Antimicrobial Stewardship Clinical Expert Working Group (PACE)
[no relevant conflicts of interest or financial disclosures] |
| Dr Luke Chen MD | Hematology Physician, Vancouver General Hospital
[relevant conflicts of interest and/or financial disclosures listed below]
-Advisory Board member for GlaxoSmithKline for the drug mepolizumab (IL-5 blocker) in hypereosinophilic syndromes (this is not directly related to COVID-19 research) |
| Dr Greg Deans MD | Infectious Diseases Physician, Fraser Health (Surrey)
[no relevant conflicts of interest or financial disclosures] |
| Dr Josh Douglas MD | Infectious Diseases and Critical Care Physician, Lions Gate Hospital
[no relevant conflicts of interest or financial disclosures] |
| Dr Barbara Falkner PharmD | Pharmacist, Professional Practice, Northern Health Authority
[no relevant conflicts of interest or financial disclosures] |
| Dr Ryan Foster MD | Critical Care Physician, Kelowna General Hospital
[no relevant conflicts of interest or financial disclosures] |
| Dr Sean Gorman PharmD | Critical Care Pharmacist and Pharmacy Coordinator, Interior Health Authority
[no relevant conflicts of interest or financial disclosures] |
| Dr Jennifer Grant MD | Infectious Diseases and Medical Microbiology Physician, Vancouver General Hospital
[relevant conflicts of interest and/or financial disclosures listed below]
-investigator of CATCO study |
<p>| Dr Abu Hamour MD | Infectious Diseases Physician, University Hospital of Northern British Columbia Hospital |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Position</th>
<th>Conflicts of Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr David Harris MD</td>
<td>Infectious Diseases Physician, St Paul's Hospital</td>
<td>[no relevant conflicts of interest or financial disclosures]</td>
</tr>
<tr>
<td>Dr Shahin Jamal MD</td>
<td>Rheumatology Physician, Vancouver General Hospital</td>
<td>[no relevant conflicts of interest or financial disclosures]</td>
</tr>
<tr>
<td>Dr Ifan Kuo PharmD</td>
<td>Director Optimal Use and Evaluation Branch, Pharmaceutical Services Division, Ministry of Health</td>
<td>[no relevant conflicts of interest or financial disclosures]</td>
</tr>
<tr>
<td>Dr Tim Lau PharmD</td>
<td>Infectious Diseases Pharmacist and Clinical Supervisor, Vancouver General Hospital</td>
<td>[no relevant conflicts of interest or financial disclosures]</td>
</tr>
<tr>
<td>Dr Agnes Lee MD</td>
<td>Hematology, Director Thrombosis Program, Vancouver General Hospital</td>
<td>[relevant conflicts of interest and/or financial disclosures listed below]</td>
</tr>
<tr>
<td></td>
<td>- research grant – BMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- consultancy/honoraria – Bayer, LEO Pharma, Pfizer, BMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- DSMB member for NIH-funded COVID trials in anticoagulation (ACTIV 4 studies)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Co-PI for CAVEAT (VCHRI funded)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Co-investigator for RAPID (investigator-initiated)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Co-investigator for VIRTUOSO (CIHR funded)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- COVID FAQ updates on anticoagulation and thrombosis for American Society of Hematology</td>
<td></td>
</tr>
<tr>
<td>Dr Allison Mah MD</td>
<td>Infectious Diseases (Transplant) Physician, Vancouver General Hospital</td>
<td>[relevant conflicts of interest and/or financial disclosures listed below]</td>
</tr>
<tr>
<td></td>
<td>- consultancy/honoraria - Merck, Avir, Gilead, Verity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Site PI for CATCO (CIHR and VCHRI funded)</td>
<td></td>
</tr>
<tr>
<td>Dr Gregory Mah PharmD</td>
<td>Critical Care Pharmacist, Vancouver General Hospital</td>
<td>[no relevant conflicts of interest or financial disclosures]</td>
</tr>
<tr>
<td>Dr Rita McCracken MD PhD</td>
<td>Family Physician, Long Term Care, Vancouver Coastal Health</td>
<td>[no relevant conflicts of interest or financial disclosures]</td>
</tr>
<tr>
<td>Dr Rumi McGloin PharmD</td>
<td>Critical Care Pharmacist and Clinical Coordinator, Surrey Memorial Hospital</td>
<td>[no relevant conflicts of interest or financial disclosures]</td>
</tr>
<tr>
<td>Dr Graydon Meneilly MD MSBe</td>
<td>Internal Medicine Physician and Department Head, Internal Medicine, Vancouver General Hospital</td>
<td>[no relevant conflicts of interest or financial disclosures]</td>
</tr>
<tr>
<td>Dr David Migneault MD MSBe</td>
<td>Ethicist, Emergency Medicine Specialist, Vancouver Coastal Health</td>
<td>[no relevant conflicts of interest or financial disclosures]</td>
</tr>
<tr>
<td>Dr Anish Mitra MD MPH</td>
<td>Critical Care Physician, Surrey Memorial Hospital</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Conflicts of Interest</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Dr Srinivas Murthy MD</td>
<td>Infectious Diseases and Critical Care Physician, Children’s Hospital</td>
<td>[relevant conflicts of interest and/or financial disclosures listed below]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-PI for CATCO study</td>
</tr>
<tr>
<td>Dr Cesilia Nishi PharmD</td>
<td>Infectious Diseases Pharmacist, Vancouver General Hospital</td>
<td>[no relevant conflicts of interest or financial disclosures]</td>
</tr>
<tr>
<td>Dr Daniel Ovakim MD</td>
<td>Critical Care Physician, Royal Jubilee Hospital</td>
<td>[relevant conflicts of interest and/or financial disclosures listed below]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-PI for CATCO, ATTACC, CONCOR-1 studies in COVID-19</td>
</tr>
<tr>
<td>Dr Elizabeth Parfitt MD</td>
<td>Infectious Diseases Physician, Royal Inland Hospital</td>
<td>[relevant conflicts of interest and/or financial disclosures listed below]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-site investigator for CATCO trial</td>
</tr>
<tr>
<td>Dr Eric Partlow MD</td>
<td>Infectious Diseases Physician, Royal Jubilee Hospital</td>
<td>[conflicts of interest and/or financial disclosures pending]</td>
</tr>
<tr>
<td>Dr Nilu Partovi PharmD</td>
<td>Solid Organ Transplant Pharmacist and Clinical Coordinator, Vancouver General Hospital</td>
<td>[no relevant conflicts of interest or financial disclosures]</td>
</tr>
<tr>
<td>Dr Jolanta Piszczek PharmD MSc</td>
<td>Infectious Diseases Pharmacist, Royal Jubilee Hospital</td>
<td>[conflicts of interest and/or financial disclosures pending]</td>
</tr>
<tr>
<td>Dr Natasha Press MD</td>
<td>Infectious Diseases Physician, St. Paul’s Hospital</td>
<td>[conflicts of interest and/or financial disclosures pending]</td>
</tr>
<tr>
<td>Alicia Rahier BScPharm, ACPR</td>
<td>Antimicrobial Stewardship Pharmacist, University Hospital of Northern British Columbia Hospital</td>
<td>[no relevant conflicts of interest or financial disclosures]</td>
</tr>
<tr>
<td>Dr Marietjie Slabbert MBChB MSc</td>
<td>Critical Care Medicine Physician, University Hospital of Northern British Columbia Hospital</td>
<td>[no relevant conflicts of interest or financial disclosures]</td>
</tr>
<tr>
<td>Dr Ted Steiner MD</td>
<td>Infectious Diseases Physician and Division Head of Infectious Diseases, Vancouver General Hospital</td>
<td>[relevant conflicts of interest and/or financial disclosures listed below]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-funding support for clinical trials from Sanofi Pasteur and Beyond Air for research related to COVID-19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-funding support from Rebiotix, Summit, and Seres for projects unrelated to COVID-19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-research grant from Merck for a project unrelated to COVID-19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-consulting fees from Avir, Verity, and Ferring for products unrelated to COVID-19</td>
</tr>
<tr>
<td>Dr Rob Stenstrom MD PhD</td>
<td>Emergency Medicine Physician and Research Director, St Paul’s Hospital</td>
<td>[no relevant conflicts of interest or financial disclosures]</td>
</tr>
</tbody>
</table>
SEARCH STRATEGY:

Search Databases: PubMed, Medline, Ovid
REFERENCES:

