Due to changes in testing strategies in BC, current case counts are an underestimate of the true number of COVID-19 cases in BC. This underestimation has increased compared to the period prior to the emergence of the Omicron variant in BC. The provincial incidence by episode date was 12 per 100K (653 cases) in week 34, which has decreased slightly from 14 per 100K in week 33.

Incidence by Health Authority from week 33 to week 34:
- Fraser Health incidence remained stable at 11 and 12 per 100K
- Interior Health incidence remained stable at 18 per 100K
- Vancouver Island Health incidence decreased from 18 to 12 per 100K
- Northern Health incidence decreased from 14 to 12 per 100K
- Vancouver Coastal Health incidence decreased from 12 to 10 per 100K

Testing of MSP-funded specimens decreased from ~4,350 in week 33 to ~4,100 in week 34, and the percent positivity of MSP-funded specimens remained stable at 19.3% in week 33 and 18.9% in week 34.

The per capita testing rates for MSP-funded specimens between week 33 and week 34 decreased or remained stable in all age groups except in 15-19 and 80+ year-olds, where testing rates increased from 25 per 100K in week 33 to 32 per 100K in week 34 and from 413 per 100K in week 33 to 417 per 100K in week 34, respectively. Percent positivity between week 33 and week 34 decreased or remained stable in all age groups except 10-14, 15-19 and 60-79 year-olds.

Age-specific incidence rates between week 33 and week 34 decreased or remained stable in all age groups except 40-49 year-olds where the incidence rate increased from 4 per 100K in week 33 to 7 per 100K in week 34.

The number of people in hospital with a positive COVID-19 test decreased from 216 in week 33 to 165 in week 34. In week 34, 60+ year-olds had the highest number of people in hospital with a positive COVID-19 test, with 61 hospitalizations in 60-79 year-olds and 70 hospitalizations in 80+ year-olds. The number of people in critical care decreased from 44 in week 33 to 27 in week 34. In week 34, 60-79 year-olds had the highest number of people in critical care (15 critical care admissions).

The weekly number of deaths from any cause among people testing positive for COVID-19 decreased from 49 in week 33 to 38 in week 34. In week 34, 80+ year-olds had the highest number of deaths from any cause among people testing positive for COVID-19, with 27 deaths in this age group. From week 15 to week 28 where the underlying cause of death (UCD) has been reported for at least 95% of the post-transition deaths, an average of 42% of these deaths were reported to have COVID-19 as their UCD.

Due to changes in testing strategies in BC in 2022 focusing on targeted higher risk populations, current case counts are an underestimate of the true number of COVID-19 cases in BC. This underestimation has increased compared to the period prior to the emergence of the Omicron variant in BC. The provincial incidence by episode date was 12 per 100K (653 cases) in week 34, which has decreased slightly from 14 per 100K in week 33.

Incidence by Health Authority from week 33 to week 34:
- Fraser Health incidence remained stable at 11 and 12 per 100K
- Interior Health incidence remained stable at 18 per 100K
- Vancouver Island Health incidence decreased from 18 to 12 per 100K
- Northern Health incidence decreased from 14 to 12 per 100K
- Vancouver Coastal Health incidence decreased from 12 to 10 per 100K

Testing of MSP-funded specimens decreased from ~4,350 in week 33 to ~4,100 in week 34, and the percent positivity of MSP-funded specimens remained stable at 19.3% in week 33 and 18.9% in week 34.

The per capita testing rates for MSP-funded specimens between week 33 and week 34 decreased or remained stable in all age groups except in 15-19 and 80+ year-olds, where testing rates increased from 25 per 100K in week 33 to 32 per 100K in week 34 and from 413 per 100K in week 33 to 417 per 100K in week 34, respectively. Percent positivity between week 33 and week 34 decreased or remained stable in all age groups except 10-14, 15-19 and 60-79 year-olds.

Age-specific incidence rates between week 33 and week 34 decreased or remained stable in all age groups except 40-49 year-olds where the incidence rate increased from 4 per 100K in week 33 to 7 per 100K in week 34.

The number of people in hospital with a positive COVID-19 test decreased from 216 in week 33 to 165 in week 34. In week 34, 60+ year-olds had the highest number of people in hospital with a positive COVID-19 test, with 61 hospitalizations in 60-79 year-olds and 70 hospitalizations in 80+ year-olds. The number of people in critical care decreased from 44 in week 33 to 27 in week 34. In week 34, 60-79 year-olds had the highest number of people in critical care (15 critical care admissions).

The weekly number of deaths from any cause among people testing positive for COVID-19 decreased from 49 in week 33 to 38 in week 34. In week 34, 80+ year-olds had the highest number of deaths from any cause among people testing positive for COVID-19, with 27 deaths in this age group. From week 15 to week 28 where the underlying cause of death (UCD) has been reported for at least 95% of the post-transition deaths, an average of 42% of these deaths were reported to have COVID-19 as their UCD.

In week 34, based on earliest symptom onset date, 1 new care facility outbreak in acute care was declared.

BELOW ARE IMPORTANT NOTES relevant to the interpretation of cases, hospitalizations, and deaths:
- Due to changes in testing strategies in BC in 2022 focusing on targeted higher risk populations, current case counts are an underestimate of the true number of COVID-19 cases in BC. This underestimation has increased compared to the period prior to the emergence of the Omicron variant in BC.
- Hospital data include admissions for people who test positive for COVID-19 through hospital screening practices, regardless of the reason for admission. Therefore, reported hospitalizations overestimate the true number of people who are hospitalized specifically due to COVID-19 infection.
- Pre-transition (case line list) deaths include COVID-19 related deaths reported by Health Authorities up to April 1, 2022. As of April 2, 2022, post-transition (automated linkage) deaths include people who died from any cause recorded in Vital Statistics within 30 days of their first positive COVID-19 lab result date. Deaths reported after the system transition use a broader definition and will overestimate the true number of deaths due to COVID-19 since death registration is recorded before the underlying cause of death is determined. Due to the change in data source for death data, the number of pre-transition deaths should not be compared to the number of post-transition deaths.
BELOW ARE IMPORTANT NOTES relevant to the interpretation of data displayed in this bulletin:

- Cases include lab confirmed, lab probable, and epi-linked cases. Case definition can be found at http://www.bccdc.ca/health-professionals/clinical-resources/case-definitions/covid-19-(novel-coronavirus). Cases include those reported in Health Authority case line lists and positive laboratory results in the Provincial Laboratory Information Solution (PLIS) up to April 1, 2022. As of April 2, 2022, only positive laboratory results in the PLIS are included and cases who are residents from outside of BC are not included.

- Episode date is defined by date of illness onset when available. When illness onset date is unavailable, earliest laboratory date is used (collection or result date); if also unavailable, then public health case report date is used. As of April 2, 2022, episode date reflects earliest laboratory date (collection or result date) only. Analyses based on episode date may better represent the timing of epidemic evolution. Episode-based tallies for recent weeks are expected to increase as case data are more complete.

- Surveillance date is defined by lab result date, if unavailable, then public health case report date is used. As of April 2, 2022, surveillance date reflects lab result date only. The weekly tally by surveillance date includes cases with illness onset date in preceding weeks.

- Hospitalizations include those reported by Health Authorities up to April 1, 2022. As of April 2, 2022, hospitalizations are defined as individuals who test positive for COVID-19 and are hospitalized as recorded in the PHSA Provincial COVID-19 Monitoring Solution (PCMS). Hospitalizations for individuals 0-19 years-old are reported by linked hospitalization episodes from the PCMS since the beginning of the pandemic. Episode date for hospitalization is defined by admission date, if unavailable, surveillance date is used.

- Critical care admissions (HAU, ICU, and critical care surge beds) include individuals who test positive for COVID-19 and are in critical care admission as recorded in the PCMS. Episode date for critical care admission is defined by critical care admission date, if unavailable, surveillance date is used. Previously only ICU admissions were presented in this report. Critical care admissions comprises a broader category than ICU admissions and therefore, the number of critical care admissions should not be compared to number of ICU admissions from previous weeks.

- Deaths include COVID-19 related deaths reported by Health Authorities up to April 1, 2022. As of April 2, 2022, deaths are any COVID-19 lab positive cases who died from any cause recorded in Vital Statistics within 30 days of their first positive lab result date. Episode date for death is defined by death date, if unavailable, surveillance date is used.

- As of April 2, 2022, data on Health Authority outbreaks are compiled from outbreak files provided by the Health Authorities.

- Laboratory PLOVER data include Medical Service Plan (MSP) funded (e.g. clinical diagnostic tests) and non-MSP funded (e.g. screening tests) specimens.

- Per capita rates/incidences for year 2020 are based on Population Estimates 2020 (n= 5,147,772 for BC overall), for year 2021 are based on PEOPLE 2021 estimates (n= 5,194,137 for BC overall), and for year 2022 is based on PEOPLE 2021 estimates (n= 5,263,772 for BC overall).

- Data sources include Health Authority case line lists, PHSA Provincial COVID-19 Monitoring Solution (PCMS), Vital Statistics, laboratory PLOVER data, and aggregate outbreak files from Health Authorities.

- Integrated case data (including surveillance variables created using Health Authority case line lists, PCMS, and Vital Statistics) were extracted on September 05, 2022, laboratory PLOVER data on September 01, 2022, and Health Authority outbreak files on August 31, 2022.
A. COVID-19 case counts and epidemic curve

Due to changes in testing strategies in BC in 2022 focusing on targeted higher risk populations, current case counts are an underestimate of the true number of COVID-19 cases in BC. This underestimation has increased compared to the period prior to the emergence of the Omicron variant in BC. Up to week 34 there have been 382,473 cases for a cumulative incidence of 7,266 per 100K (Table 1, Figure 1). The provincial incidence by episode date was 12 per 100K (653 cases) in week 34, which has decreased slightly from 14 per 100K in week 33.

Incidence rates from week 33 to week 34 decreased or remained stable in all HAs. In week 34, the highest incidence rate was in Interior Health (IH) at 18 per 100K. Incidence by episode date may increase as data become more complete in recent weeks.

Table 1. Episode-based case tallies by Health Authority, BC, Jan 15, 2020 (week 3) – Aug 27, 2022 (week 34) (N= 382,473)

<table>
<thead>
<tr>
<th>Case tallies by episode date</th>
<th>Health Authority of Residence</th>
<th>Outside Canada</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FH</td>
<td>IH</td>
<td>VIHA</td>
</tr>
<tr>
<td>Week 34, case counts</td>
<td>237</td>
<td>150</td>
<td>104</td>
</tr>
<tr>
<td>Cumulative case counts</td>
<td>167,892</td>
<td>68,077</td>
<td>37,929</td>
</tr>
<tr>
<td>Week 34, cases per 100K population</td>
<td>12</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>Cumulative cases per 100K population</td>
<td>8,449</td>
<td>8,218</td>
<td>4,309</td>
</tr>
</tbody>
</table>

Figure 1. Episode-based epidemic curve (bars), surveillance date (line) and Health Authority (HA), BC Jan 3, 2021 (week 1) – Aug 27, 2022 (week 34) (N= 326,623)
B. Test rates and percent positive

COVID-19 testing guidelines recommend testing for people who have COVID-19 symptoms, and are at risk of more severe disease or live/work in high-risk settings. As shown by the darker-colored bars and dotted line in **Figure 2**, the number of MSP-funded specimens decreased from ~4,350 in week 33 to ~4,100 in week 34, and the percent positivity of MSP-funded specimens remained stable at 19.3% in week 33 and 18.9% in week 34.

As shown by the dotted lines in **Figure 3**, the per capita testing rates for MSP-funded specimens (Panel A) decreased or remained stable in all HAs. IH had the highest testing rate at 83 per 100K. The percent positivity (Panel B) for MSP-funded specimens decreased or remained stable in all HAs except FH and NH where the percent positivity increased from 19.0% in week 33 to 22.0% in week 34, and from 21.4% in week 33 to 23.3% in week 34, respectively. In week 34, percent positivity ranged from 15.3% in VCH to 23.3% in NH.

Figure 2. Number of specimens tested and percent SARS-CoV-2 positive, by collection week, BC Jan 3, 2021 (week 1) – Aug 27, 2022 (week 34)

Figure 3. Testing rates and percent SARS-CoV-2 positive by Health Authority and collection week, BC Jan 3, 2021 (week 1) – Aug 27, 2022 (week 34)

Data source: Laboratory PLOVER data
C. Age profile, testing and cases

Testing rates and percent positivity by age group
As shown by the bars in Figure 4, the per capita testing rates for MSP-funded specimens between week 33 and week 34 decreased or remained stable in all age groups except in 15-19 and 80+ year-olds, where the testing rates increased from 25 per 100K in week 33 to 32 per 100K in week 34, and from 413 per 100K in week 33 to 417 per 100K in week 34, respectively. As shown by the black dots in Figure 4, percent positivity between week 33 and week 34 decreased or remained stable in all age groups except 10-14, 15-19 and 60-79 year-olds. Percent positivity decreased the most in 0-9 year-olds, where it decreased from 16.2% in week 33 to 11.5% in week 34. In week 34, percent positivity ranged from 11.5% in 0-9 year-olds to 24.1% in 80+ year-olds.

Case distribution and weekly incidence by age group
As shown in Figure 5, age-specific incidence rates between week 33 and week 34 decreased or remained stable in all age groups except 40-49 year-olds where the incidence rate increased from 4 per 100K in week 33 to 7 per 100K in week 34. Incidence rates decreased the most in the 80+ age group from 99 per 100K in week 33 to 84 per 100K in week 34.

Figure 4. Average weekly SARS-CoV-2 MSP testing rates and MSP percent positive by known age group, BC Jul 23, 2022 (week 29) – Aug 27, 2022 (week 34)

Data source: Laboratory PLOVER data

Figure 5. Weekly age-specific COVID-19 incidence per 100K population by epidemiological week, BC Jan 3, 2021 (week 1) – Aug 27, 2022 (week 34) (N= 326,531)
D. Severe outcomes

Hospital data include admissions for people who test positive for COVID-19 through hospital screening practices, regardless of the reason for admission. Therefore, reported hospitalizations overestimate the true number of people who are hospitalized specifically due to COVID-19 infection. The number of people in hospital with a positive COVID-19 test decreased from 216 in week 33 to 165 in week 34. The number of people in critical care decreased from 44 in week 33 to 27 in week 34.

As of April 2, 2022, death data include people who test positive for COVID-19 and died from any cause (COVID-19 or non-COVID-19) within 30 days of their first positive lab result date. The weekly number of deaths from any cause among people testing positive for COVID-19 decreased from 49 in week 33 to 38 in week 34 (Table 2).

Cumulatively, there have been 33 confirmed cases of Multi-system Inflammatory Syndrome in children and adolescents (MIS-C) in BC since January 1, 2020. There has been one new confirmed case of MIS-C since the last report. The median age of all cases is 9 years old (range from 4 months old to 16 years old).

Table 2. COVID-19 severe outcomes by episode date, Health Authority of residence, BC
Jan 15, 2020 (week 3) – Aug 27, 2022 (week 34)

<table>
<thead>
<tr>
<th>Severe outcomes by episode date</th>
<th>Health Authority of residence</th>
<th>Residing outside of Canada</th>
<th>Total n/N³ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 34, hospitalizations</td>
<td>FH</td>
<td>IH</td>
<td>VIHA</td>
</tr>
<tr>
<td>Cumulative hospitalizations</td>
<td>12,393</td>
<td>4,533</td>
<td>2,791</td>
</tr>
<tr>
<td>Week 34, critical care admissionsᵇ</td>
<td>14</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Cumulative critical care admissionsᵇ</td>
<td>2,576</td>
<td>1,029</td>
<td>440</td>
</tr>
<tr>
<td>Week 34, deaths</td>
<td>10</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Cumulative deaths, pre-transition (case line list)ᶜ</td>
<td>1,348</td>
<td>367</td>
<td>241</td>
</tr>
<tr>
<td>Cumulative deaths, post-transition (automated linkage)ᶜ</td>
<td>389</td>
<td>239</td>
<td>221</td>
</tr>
</tbody>
</table>

a. Cases with unknown outcome are included in the denominators (i.e. assumed not to have the specified severe outcome).

b. Due to the change in data source for hospitalization data, ICU admissions are no longer available. Critical care admissions are now being provided, which comprises a broader category than ICU admissions (please see Important Notes on Page 2 for more information). Number of critical care admissions should not be compared to number of ICU admissions from previous weeks.

c. Pre-transition (case line list) deaths include COVID-19 related deaths reported by Health Authorities up to April 1, 2022. As of April 2, 2022, post-transition (automated linkage) deaths are any COVID-19 lab positive cases who died from any cause recorded in Vital Statistics within 30 days of their first positive lab result date. Deaths reported after the system transition use a broader definition and will overestimate the true number of deaths due to COVID-19 since death registration is recorded before the underlying cause of death is determined. Due to the change in data source for death data, the number of pre-transition deaths should not be compared to the number of post-transition deaths.
E. Age profile, severe outcomes

Table 3 displays the distribution of cases and severe outcomes. In week 34, median age of hospital admissions, critical care admissions, pre-transition deaths, and post-transition deaths with underlying cause of death (UCD) as COVID-19 was 67 years, 63 years, 82 years, and 85 years, respectively.

In week 34, 60+ year-olds had the highest number of people in hospital with a positive COVID-19 test, with 61 hospitalizations in 60-79 year-olds and 70 hospitalizations in 80+ year-olds. In week 34, 60-79 year-olds had the highest number of people in critical care (15 critical care admissions). In week 34, 80+ year-olds had the highest number of deaths from any cause among people testing positive for COVID-19, with 27 deaths in this age group. (Figure 6).

In the past four weeks (from week 31 to week 34), there has been a weekly average of 2 deaths in those <60 years of age, 4 deaths in 60-69 year-olds, 10 deaths in 70-79 year-olds and 28 deaths in the 80+ year-olds (data not shown). The number of deaths may increase over time as data becomes more complete.

Table 3: COVID-19 cases, hospitalizations, critical care admissions, and deaths by age group, BC, Jan 15, 2020 (week 3) – Aug 27, 2022 (week 34) (N= 382,442)^

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>Cases</th>
<th>Hospitalizations n (%)</th>
<th>Critical care admissions (case line list) n (%)</th>
<th>Pre-transition (automated linkage) deaths ≤ 19 n (%)</th>
<th>UCD as COVID-19 n (%)</th>
<th>UCD as non-COVID-19 n (%)</th>
<th>UCD pending n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>31,053</td>
<td>584 (2)</td>
<td>72 (<1)</td>
<td>2 (<1)</td>
<td>2 (<1)</td>
<td>2 (<1)</td>
<td>0 (<1)</td>
</tr>
<tr>
<td>10-19</td>
<td>35,874</td>
<td>369 (1)</td>
<td>52 (<1)</td>
<td>0 (<1)</td>
<td>0 (<1)</td>
<td>2 (<1)</td>
<td>0 (<1)</td>
</tr>
<tr>
<td>20-29</td>
<td>73,648</td>
<td>1,396 (2)</td>
<td>212 (<1)</td>
<td>6 (<1)</td>
<td>1 (<1)</td>
<td>7 (<1)</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>30-39</td>
<td>70,649</td>
<td>2,387 (3)</td>
<td>439 (1)</td>
<td>31 (<1)</td>
<td>1 (<1)</td>
<td>8 (<1)</td>
<td>0 (<1)</td>
</tr>
<tr>
<td>40-49</td>
<td>54,541</td>
<td>2,270 (4)</td>
<td>588 (1)</td>
<td>64 (<1)</td>
<td>2 (<1)</td>
<td>9 (<1)</td>
<td>0 (<1)</td>
</tr>
<tr>
<td>50-59</td>
<td>44,529</td>
<td>3,243 (7)</td>
<td>1,079 (2)</td>
<td>166 (<1)</td>
<td>4 (<1)</td>
<td>34 (1)</td>
<td>5 (<1)</td>
</tr>
<tr>
<td>60-69</td>
<td>31,155</td>
<td>4,529 (15)</td>
<td>1,479 (5)</td>
<td>353 (1)</td>
<td>36 (1)</td>
<td>56 (2)</td>
<td>9 (<1)</td>
</tr>
<tr>
<td>70-79</td>
<td>18,767</td>
<td>5,381 (29)</td>
<td>1,371 (7)</td>
<td>655 (4)</td>
<td>90 (2)</td>
<td>136 (3)</td>
<td>25 (1)</td>
</tr>
<tr>
<td>80-89</td>
<td>14,442</td>
<td>5,063 (35)</td>
<td>627 (4)</td>
<td>989 (10)</td>
<td>160 (3)</td>
<td>189 (4)</td>
<td>41 (1)</td>
</tr>
<tr>
<td>90+</td>
<td>7,784</td>
<td>2,176 (28)</td>
<td>87 (1)</td>
<td>736 (15)</td>
<td>143 (5)</td>
<td>148 (5)</td>
<td>41 (1)</td>
</tr>
<tr>
<td>Total</td>
<td>382,442</td>
<td>27,398</td>
<td>6,006</td>
<td>3,002</td>
<td>439</td>
<td>591</td>
<td>122</td>
</tr>
</tbody>
</table>

Median age: 37, 67, 63, 82, 85, 81, 84.5

a. Among those with available age information only.

b. Due to the change in data source for hospitalization data, ICU admissions are no longer available. Critical care admissions are now being provided, which comprises a broader category than ICU admissions (please see Important Notes on Page 2 for more information). Number of critical care admissions should not be compared to number of ICU admissions from previous weeks.

c. Pre-transition (case line list) deaths include COVID-19 related deaths reported by Health Authorities up to April 1, 2022. As of April 2, 2022, post-transition (automated linkage) deaths are any COVID-19 lab positive cases who died from any cause recorded in Vital Statistics within 30 days of their first positive lab result date. Deaths reported after the system transition use a broader definition and will overestimate the true number of deaths due to COVID-19 since death registration is recorded before the underlying cause of death is determined. Due to the change in data source for death data, the number of pre-transition deaths should not be compared to the number of post-transition deaths.

d. Since underlying cause of death (UCD) takes approximately 8 weeks to be recorded, all-cause mortality is initially reported and then retrospective evaluations of underlying cause of death are provided here to better understand true COVID-19 mortality. UCD as COVID-19 are deaths that have been determined to be caused by COVID-19 in their Vital Stats record. UCD as non-COVID-19 are deaths that have been determined to be not attributable to COVID-19 in their Vital Stats record that are reported as deaths due to a lab positive COVID-19 test within 30 days of death. UCD pending are all post-transition deaths that do not yet have a recorded UCD.
Figure 6. Weekly COVID-19 hospital admissions (A), critical care admissions (B), and deaths (C) by age groups, BC, Jan 3, 2021 (week 1) – Aug 27, 2022 (week 34)\(^a\)

- **A** Hospitalization
 - Number of hospitalizations by episode date by epidemiological week
 - Expected to show greatest increase by episode date as data become more complete

- **B** Critical Care
 - Number of critical care admissions by episode date by epidemiological week
 - Expected to show greatest increase by episode date as data become more complete

- **C** Death
 - Number of deaths by episode date by epidemiological week
 - Expected to show greatest increase by episode date as data become more complete

\(^a\) Among those with available age information only.

Figure 7 displays the number of post-transition deaths (i.e. people who test positive for COVID-19 and died from any cause within 30 days of their first positive lab result date) by UCD as recorded in Vital Statistics from week 15 to week 34 in 2022. From week 15 to week 28 where the UCD has been reported for at least 95% of the post-transition deaths, an average of 42% of these deaths were reported to have COVID-19 as their UCD. Post-transition deaths with complete UCD information are expected to increase over time.

Figure 7. Post-transition deaths by underlying cause of death, BC, Apr 10, 2022 (week 15) – Aug 27, 2022 (week 34)\(^ab\)

- **30-day mortality, UCD as COVID-19**
- **30-day mortality, UCD as non-COVID-19**
- **30-day mortality, UCD pending**

\(^a\) As of April 2, 2022, post-transition (automated linkage) deaths are any COVID-19 lab positive cases who died from any cause recorded in Vital Statistics within 30 days of their first positive lab result date. Deaths reported after the system transition use a broader definition and will overestimate the true number of deaths due to COVID-19 since death registration is recorded before the underlying cause of death is determined. Due to the change in data source for death data, the number of pre-transition deaths should not be compared to the number of post-transition deaths.

\(^b\) Since underlying cause of death (UCD) takes approximately 8 weeks to be recorded, all-cause mortality is initially reported and then retrospective evaluations of underlying cause of death are provided here to better understand true COVID-19 mortality. UCD as COVID-19 are deaths that have been determined to be caused by COVID-19 in their Vital Stats record. UCD as non-COVID-19 are deaths that have been determined to be not attributable to COVID-19 in their Vital Stats record that are reported as deaths due to a lab positive COVID-19 test within 30 days of death. UCD pending are all post-transition deaths that do not yet have a recorded UCD.
F. Care facility outbreaks

As shown in Table 4 and Figure 8, 703 care facility (acute care and long-term care settings) outbreaks were reported in total in BC to the end of week 34. In week 34, based on earliest symptom onset date (if unavailable, then outbreak declared date is used), 1 new care facility outbreak was declared, which was in an acute care facility. In the past four weeks (from week 31 to week 34), there has been a weekly average of 3 care facility outbreaks.

Table 4. COVID-19 care facility outbreaks by earliest case onset, associated cases and deaths by episode date, BC Jan 15, 2020 (week 3) – Aug 27, 2022 (week 34) (N=703)

<table>
<thead>
<tr>
<th>Care facility outbreaks and cases by episode date</th>
<th>Outbreaks</th>
<th>Cases</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residents</td>
<td>Staff/other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residents</td>
<td>Staff/other</td>
</tr>
<tr>
<td></td>
<td>Week 34, Care Facility Outbreaks</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Cumulative, Care Facility Outbreaks</td>
<td>703</td>
<td>9,978</td>
</tr>
</tbody>
</table>

Figure 8. COVID-19 care facility outbreaks by earliest case onset, facility type (A) and Health Authority (B), BC Jan 3, 2021 (week 1) – Aug 27, 2022 (week 34) (N=452)

- A. Case and death counts include PCR positive cases only for outbreaks in NHA and VIHA. Vancouver Coastal Health, Fraser Health Authority, and Interior Health Authority outbreaks may also include those diagnosed by rapid antigen tests or considered as suspect reinfection.
- B. Earliest dates of onset of outbreak cases are subject to change as investigations and data are updated. If unavailable, outbreak declared date is used.
- C. New outbreaks reported since the last report with an earliest case onset date (if unavailable, outbreak declared date is used) prior to the current reporting week will be included in the cumulative care facility outbreak total.
- D. Cases with unknown role are included in the case count for Staff/other.
- E. Data might be incomplete or vary from what was reported previously due to updates by Health Authorities.
G. Wastewater surveillance

The BCCDC and Metro Vancouver measure SARS-CoV-2 in wastewater at five wastewater treatment plants (treating wastewater from 50% of BC’s population). To account for changing wastewater volume due to rainfall or snowmelt, SARS-CoV-2 concentrations are normalized to wastewater flow. Normalized SARS-CoV-2 wastewater levels (measured as viral copies per day) are shown alongside incident COVID-19 cases in each wastewater catchment area in Figure 9 and Figure 10. The BCCDC’s test results are obtained from the liquid fraction of the wastewater sample. Other organizations, such as the National Microbiology Laboratory, test from the solid fraction of wastewater and therefore, their results are not directly comparable.

Key messages with results through to September 3, 2022

SARS-CoV-2 viral loads have stabilized or begun to increase at some plants after falling from their most recent peak in late-June or early-July in Metro Vancouver wastewater. Additional results in future weeks are required to confirm this trend. Recently, data from Lion’s Gate plant are more variable than expected. This may be due to unique features of the plant’s operation, though the exact cause is under review. While under review, we have not included trends of these data.

- Over the past two weeks, viral loads at Annacis Island WWTP (Fraser North and South) have decreased by 32%.
- Over the week, viral loads at Northwest Langley WWTP (Northwest Langley) have increased by 51%.
- Over the past two weeks, viral loads at Iona Island WWTP (Vancouver) have increased by 82%.
- Over the past week, viral loads at Lulu Island WWTP (Richmond) have decreased by 10%.

Figure 9. Wastewater surveillance, FH
H. Additional resources

For COVID-19 vaccination coverage data, visit the COVID-19 Vaccination Coverage Dashboard here: http://www.bccdc.ca/health-professionals/data-reports/covid-19-surveillance-dashboard

Variant of concern (VOC) findings are available weekly here: http://www.bccdc.ca/health-info/diseases-conditions/covid-19/data#variants

For local, national, and global comparisons of BC to other jurisdictions on key epidemiological metrics, visit the BCCDC COVID-19 Epidemiology App here: https://bccdc.shinyapps.io/covid19_global_epi_app/

BC’s COVID-19 Immunization Plan is updated regularly here: https://www2.gov.bc.ca/gov/content/covid-19/vaccine/plan