Due to changes in testing strategies in BC, current case counts are an underestimate of the true number of COVID-19 cases in BC. This underestimation has increased compared to the period prior to the emergence of the Omicron variant in BC. The provincial incidence by episode date was 17 per 100K (903 cases) in week 31, which has slightly decreased from 18 per 100K in week 30.

Incidence by Health Authority from week 30 to week 31:
- Fraser Health incidence decreased from 19 to 14 per 100K
- Interior Health incidence remained stable at 21 per 100K
- Vancouver Island Health incidence remained stable at 17 per 100K
- Northern Health incidence decreased from 19 to 13 per 100K
- Vancouver Coastal Health incidence remained stable at 18 per 100K

Testing of MSP-funded specimens decreased from ~5,000 in week 30 to ~4,800 in week 31, and the percent positivity of MSP-funded specimens remained stable at 22% in week 31.

The per capita testing rates for MSP-funded specimens between week 30 and week 31 decreased or remained stable in all age groups except in 80+ year-olds, where the testing rates increased from 460 per 100K in week 30 to 488 per 100K in week 31. Percent positivity between week 30 and week 31 decreased or remained stable in all age groups except in 80+ year-olds, where the percent positivity increased from 26.9% in week 30 to 28.3% in week 31.

Age-specific incidence rates between week 30 and week 31 decreased or remained stable in all age groups except for 80+ year-olds where the incidence rate increased from 115 per 100K in week 30 to 120 per 100K in week 31. Incidence rates decreased the most in the <10 year-olds where it decreased from 15 per 100K in week 30 to 11 per 100K in week 31.

The number of people in hospital with a positive COVID-19 test decreased from 315 in week 30 to 182 in week 31. The number of people in critical care decreased from 38 in week 30 to 35 in week 31. In week 31, 60+ year-olds had the highest number of people in hospital with a positive COVID-19 test, with 65 hospitalizations in 60-79 year-olds and 76 hospitalizations in 80+ year-olds. In week 31, 60-79 year-olds had the highest number of people in critical care (17 critical care admissions).

The weekly number of deaths from any cause among people testing positive for COVID-19 decreased from 55 in week 30 to 40 in week 31. In week 31, 80+ year-olds had the highest number of deaths from any cause among people testing positive for COVID-19, with 23 deaths in this age group. From week 14 to week 24 where the underlying cause of death (UCD) has been reported for at least 95% of the post-transition deaths, an average of 43% of these death were reported to have COVID-19 as their UCD.

In week 31, based on earliest symptom onset date (if unavailable, then outbreak declared date is used), 5 new care facility outbreaks (in long-term care) were declared.

BELOW ARE IMPORTANT NOTES relevant to the interpretation of cases, hospitalizations, and deaths:

- Due to changes in testing strategies in BC in 2022 focusing on targeted higher risk populations, current case counts are an underestimate of the true number of COVID-19 cases in BC. This underestimation has increased compared to the period prior to the emergence of the Omicron variant in BC.
- Hospital data include admissions for people who test positive for COVID-19 through hospital screening practices, regardless of the reason for admission. Therefore, reported hospitalizations overestimate the true number of people who are hospitalized specifically due to COVID-19 infection.
- Pre-transition (case line list) deaths include COVID-19 related deaths reported by Health Authorities up to April 1, 2022. As of April 2, 2022, post-transition (automated linkage) deaths include people who died from any cause recorded in Vital Statistics within 30 days of their first positive COVID-19 lab result date. Deaths reported after the system transition use a broader definition and will overestimate the true number of deaths due to COVID-19 since death registration is recorded before the underlying cause of death is determined. Due to the change in data source for death data, the number of pre-transition deaths should not be compared to the number of post-transition deaths.
BELOW ARE IMPORTANT NOTES relevant to the interpretation of data displayed in this bulletin:

- Cases include lab confirmed, lab probable, and epi-linked cases. Case definition can be found at http://www.bccdc.ca/health-professionals/clinical-resources/case-definitions/covid-19-(novel-coronavirus). Cases include those reported in Health Authority case line lists and positive laboratory results in the Provincial Laboratory Information Solution (PLIS) up to April 1, 2022. As of April 2, 2022, only positive laboratory results in the PLIS are included and cases who are residents from outside of BC are not included.

- Episode date is defined by date of illness onset when available. When illness onset date is unavailable, earliest laboratory date is used (collection or result date); if also unavailable, then public health case report date is used. As of April 2, 2022, episode date reflects earliest laboratory date (collection or result date) only. Analyses based on episode date may better represent the timing of epidemic evolution. Episode-based tallies for recent weeks are expected to increase as case data are more complete.

- Surveillance date is defined by lab result date, if unavailable, then public health case report date is used. As of April 2, 2022, surveillance date reflects lab result date only. The weekly tally by surveillance date includes cases with illness onset date in preceding weeks.

- Hospitalizations include those reported by Health Authorities up to April 1, 2022. As of April 2, 2022, hospitalizations are defined as individuals who test positive for COVID-19 and are hospitalized as recorded in the PHSA Provincial COVID-19 Monitoring Solution (PCMS). Hospitalizations for individuals 0-19 years-old are reported by linked hospitalization episodes from the PCMS since the beginning of the pandemic. Episode date for hospitalization is defined by admission date, if unavailable, surveillance date is used.

- Critical care admissions (HAU, ICU, and critical care surge beds) include individuals who test positive for COVID-19 and are in critical care admission as recorded in the PCMS. Episode date for critical care admission is defined by critical care admission date, if unavailable, surveillance date is used. Previously only ICU admissions were presented in this report. Critical care admissions comprises a broader category than ICU admissions and therefore, the number of critical care admissions should not be compared to number of ICU admissions from previous weeks.

- Deaths include COVID-19 related deaths reported by Health Authorities up to April 1, 2022. As of April 2, 2022, deaths are any COVID-19 lab positive cases who died from any cause recorded in Vital Statistics within 30 days of their first positive lab result date. Episode date for death is defined by death date, if unavailable, surveillance date is used.

- Laboratory PLOVER data include Medical Service Plan (MSP) funded (e.g. clinical diagnostic tests) and non-MSP funded (e.g. screening tests) specimens.

- Per capita rates/incidences for year 2020 are based on Population Estimates 2020 (n= 5,147,772 for BC overall), for year 2021 are based on PEOPLE 2021 estimates (n= 5,194,137 for BC overall), and for year 2022 is based on PEOPLE 2021 estimates (n= 5,263,772 for BC overall).

- Data sources include Health Authority case line lists, PHSA Provincial COVID-19 Monitoring Solution (PCMS), Vital Statistics, laboratory PLOVER data, and aggregate outbreak files from Health Authorities.

- Integrated case data (including surveillance variables created using Health Authority case line lists, PCMS, and Vital Statistics) were extracted on August 15, 2022, laboratory PLOVER data on August 11, 2022, and Health Authority outbreak files on August 10, 2022.
A. COVID-19 case counts and epidemic curve

Due to changes in testing strategies in BC in 2022 focusing on targeted higher risk populations, current case counts are an underestimate of the true number of COVID-19 cases in BC. This underestimation has increased compared to the period prior to the emergence of the Omicron variant in BC. Up to week 31, there have been 380,240 cases for a cumulative incidence of 7,224 per 100K (Table 1, Figure 1). The provincial incidence by episode date was 17 per 100K (903 cases) in week 31, which has decreased slightly from 18 per 100K in week 30.

Incidence rates from week 30 to week 31 decreased or remained stable in all HAs except in Vancouver Island Health (VIH), where the incidence rate increased from 17 per 100K in week 30 to 20 per 100K in week 31. In week 31, the highest incidence rate was in Interior Health (IH) at 21 per 100K. Incidence by episode date may increase as data become more complete in recent weeks.

Table 1. Episode-based case tallies by Health Authority, BC, Jan 15, 2020 (week 3) – Aug 06, 2022 (week 31) (N=380,240)

<table>
<thead>
<tr>
<th>Case tallies by episode date</th>
<th>Health Authority of Residence</th>
<th>Outside Canada</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FH</td>
<td>IH</td>
<td>VIHA</td>
</tr>
<tr>
<td>Week 31, case counts</td>
<td>289</td>
<td>174</td>
<td>178</td>
</tr>
<tr>
<td>Cumulative case counts</td>
<td>167,163</td>
<td>67,597</td>
<td>37,504</td>
</tr>
<tr>
<td>Week 31, cases per 100K population</td>
<td>15</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>Cumulative cases per 100K population</td>
<td>8,412</td>
<td>8,160</td>
<td>4,261</td>
</tr>
</tbody>
</table>

Figure 1. Episode-based epidemic curve (bars), surveillance date (line) and Health Authority (HA), BC Jan 3, 2021 (week 1) – Aug 06, 2022 (week 31) (N=324,390)
B. Test rates and percent positive

COVID-19 testing guidelines recommend testing for people who have COVID-19 symptoms, and are at risk of more severe disease or live/work in high-risk settings. As shown by the darker-colored bars and dotted line in Figure 2, the number of MSP-funded specimens decreased from ~5,000 in week 30 to ~4,800 in week 31, and the percent positivity of MSP-funded specimens remained stable at 22% in week 31.

As shown by the dotted lines in Figure 3, the per capita testing rates for MSP-funded specimens (Panel A) decreased or remained stable in all HAs except in Interior Health (IH), where it increased from 91 per 100K in week 30 to 97 per 100K in week 31. This HA had the highest testing rate at 97 per 100K. The percent positivity (Panel B) for MSP-funded specimens decreased or remained stable in all HAs except for Vancouver Coastal Health (VCH) and Vancouver Island Health (VIH), where the percent positivity increased from 20.8% in week 30 to 21.9% in week 31 and from 22.0% in week 30 to 25.8% in week 31, respectively. In week 31, percent positivity ranged from 16.9% in NH to 25.8% in VIH.

Figure 2. Number of specimens tested and percent SARS-CoV-2 positive, by collection week, BC Jan 3, 2021 (week 1) – Aug 06, 2022 (week 31)

Figure 3. Testing rates and percent SARS-CoV-2 positive by Health Authority and collection week, BC Jan 3, 2021 (week 1) – Aug 06, 2022 (week 31)

Data source: Laboratory PLOVER data
C. Age profile, testing and cases

Testing rates and percent positivity by age group
As shown by the bars in Figure 4, the per capita testing rates for MSP-funded specimens between week 30 and week 31 decreased or remained stable in all age groups except in 80+ year-olds, where the testing rates increased from 460 per 100K in week 30 to 488 per 100K in week 31. As shown by the black dots in Figure 4, percent positivity between week 30 and week 31 decreased or remained stable in all age groups except in 80+ year-olds, where the percent positivity increased from 26.9% in week 30 to 28.3% in week 31. Percent positivity decreased the most in 5-9 year-olds, where it decreased from 13.5% in week 30 to 7.7% in week 31. In week 31, percent positivity ranged from 7.7% in 5-9 year-olds to 28.3% in 80+ year-olds.

Case distribution and weekly incidence by age group
As shown in Figure 5, age-specific incidence rates between week 30 and week 31 decreased or remained stable in all age groups except for 80+ year-olds where the incidence rate increased from 115 per 100K in week 30 to 120 per 100K in week 31. Incidence rates decreased the most in the <10 year-olds where it decreased from 15 per 100K in week 30 to 11 per 100K in week 31.

Figure 4. Average weekly SARS-CoV-2 MSP testing rates and MSP percent positive by known age group, BC Jul 02, 2022 (week 26) – Aug 06, 2022 (week 31)

Figure 5. Weekly age-specific COVID-19 incidence per 100K population by epidemiological week, BC Jan 3, 2021 (week 1) – Aug 06, 2022 (week 31) (N= 324,298)
D. Severe outcomes

Hospital data include admissions for people who test positive for COVID-19 through hospital screening practices, regardless of the reason for admission. Therefore, reported hospitalizations overestimate the true number of people who are hospitalized specifically due to COVID-19 infection. The number of people in hospital with a positive COVID-19 test decreased from 315 in week 30 to 182 in week 31. The number of people in critical care decreases from 38 in week 30 to 35 in week 31.

As of April 2, 2022, death data include people who test positive for COVID-19 and died from any cause (COVID-19 or non-COVID-19) within 30 days of their first positive lab result date. The weekly number of deaths from any cause among people testing positive for COVID-19 decreased from 55 in week 30 to 40 in week 31 (Table 2).

Cumulatively, there have been 32 confirmed cases of Multi-system Inflammatory Syndrome in children and adolescents (MIS-C) in BC since January 1, 2020. There have been no new confirmed cases of MIS-C since the last report. The median age of all cases is 9 years old (range from 4 months old to 16 years old).

Table 2. COVID-19 severe outcomes by episode date, Health Authority of residence, BC
Jan 15, 2020 (week 3) – Aug 06, 2022 (week 31)

<table>
<thead>
<tr>
<th>Severe outcomes by episode date</th>
<th>Health Authority of residence</th>
<th>Residing outside of Canada</th>
<th>Total n/N³ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FH</td>
<td>IH</td>
<td>VIHA</td>
</tr>
<tr>
<td>Week 31, hospitalizations</td>
<td>58</td>
<td>33</td>
<td>28</td>
</tr>
<tr>
<td>Cumulative hospitalizations</td>
<td>12,090</td>
<td>4,384</td>
<td>2,634</td>
</tr>
<tr>
<td>Week 31, critical care admissionsᵇ</td>
<td>17</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cumulative critical care admissionsᵇ</td>
<td>2,521</td>
<td>1,004</td>
<td>424</td>
</tr>
<tr>
<td>Week 31, deaths</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Cumulative deaths, pre-transition (case line list)ᶜ</td>
<td>1,348</td>
<td>367</td>
<td>241</td>
</tr>
<tr>
<td>Cumulative deaths, post-transition (automated linkage)ᶜ</td>
<td>348</td>
<td>205</td>
<td>188</td>
</tr>
</tbody>
</table>

a. Cases with unknown outcome are included in the denominators (i.e. assumed not to have the specified severe outcome).
b. Due to the change in data source for hospitalization data, ICU admissions are no longer available. Critical care admissions are now being provided, which comprises a broader category than ICU admissions (please see Important Notes on Page 2 for more information). Number of critical care admissions should not be compared to number of ICU admissions from previous weeks.
c. Pre-transition (case line list) deaths include COVID-19 related deaths reported by Health Authorities up to April 1, 2022. As of April 2, 2022, post-transition (automated linkage) deaths are any COVID-19 lab positive cases who died from any cause recorded in Vital Statistics within 30 days of their first positive lab result date. Deaths reported after the system transition use a broader definition and will overestimate the true number of deaths due to COVID-19 since death registration is recorded before the underlying cause of death is determined. Due to the change in data source for death data, the number of pre-transition deaths should not be compared to the number of post-transition deaths.
E. Age profile, severe outcomes

Table 3 displays the distribution of cases and severe outcomes. In week 31, median age of hospital admissions, critical care admissions, pre-transition deaths, and post-transition deaths with underlying cause of death (UCD) as COVID-19 was 67 years, 63 years, 82 years, and 85 years, respectively.

In week 31, 60+ year-olds had the highest number of people in hospital with a positive COVID-19 test, with 65 hospitalizations in 60-79 year-olds and 76 hospitalizations in 80+ year-olds. In week 31, 60-79 year-olds had the highest number of people in critical care (17 critical care admissions). In week 31, the highest number of deaths from any cause among people testing positive for COVID-19 were seen in 80+ year-olds, with 23 deaths in this age group (Figure 6).

In the past four weeks (from week 28 to week 31), there has been a weekly average of 3 deaths in those <60 years of age, 4 deaths in 60-69 year-olds, 11 deaths in 70-79 year-olds and 24 deaths in the 80+ year-olds (data not shown). The number of deaths may increase over time as data becomes more complete.

Table 3: COVID-19 cases, hospitalizations, critical care admissions, and deaths by age group, BC, Jan 15, 2020 (week 3) – Aug 06, 2022 (week 31) (N= 380,209)²

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>Cases</th>
<th>Hospitalizations n (%)</th>
<th>Critical care admissions b (n (%))</th>
<th>Pre-transition (case line list) deaths c (n (%))</th>
<th>Post-transition (automated linkage) deaths c (n (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>30,917</td>
<td>565 (2)</td>
<td>69 (<1)</td>
<td>2 (<1)</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>10-19</td>
<td>35,824</td>
<td>360 (1)</td>
<td>52 (<1)</td>
<td>0 (<1)</td>
<td>0 (<1)</td>
</tr>
<tr>
<td>20-29</td>
<td>73,515</td>
<td>1,381 (2)</td>
<td>209 (<1)</td>
<td>6 (<1)</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>30-39</td>
<td>70,477</td>
<td>2,362 (3)</td>
<td>436 (1)</td>
<td>31 (<1)</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>40-49</td>
<td>54,422</td>
<td>2,251 (4)</td>
<td>582 (1)</td>
<td>64 (<1)</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>50-59</td>
<td>44,333</td>
<td>3,189 (7)</td>
<td>1,069 (2)</td>
<td>166 (<1)</td>
<td>4 (<1)</td>
</tr>
<tr>
<td>60-69</td>
<td>30,892</td>
<td>4,406 (14)</td>
<td>1,451 (5)</td>
<td>353 (1)</td>
<td>32 (1)</td>
</tr>
<tr>
<td>70-79</td>
<td>18,375</td>
<td>5,185 (28)</td>
<td>1,334 (7)</td>
<td>655 (4)</td>
<td>75 (2)</td>
</tr>
<tr>
<td>80-89</td>
<td>13,970</td>
<td>4,828 (35)</td>
<td>598 (4)</td>
<td>989 (10)</td>
<td>131 (3)</td>
</tr>
<tr>
<td>90+</td>
<td>7,484</td>
<td>2,041 (27)</td>
<td>84 (1)</td>
<td>736 (15)</td>
<td>126 (5)</td>
</tr>
<tr>
<td>Total</td>
<td>380,209</td>
<td>26,568</td>
<td>5,884</td>
<td>3,002</td>
<td>372</td>
</tr>
</tbody>
</table>

a. Among those with available age information only.

b. Due to the change in data source for hospitalization data, ICU admissions are no longer available. Critical care admissions are now being provided, which comprises a broader category than ICU admissions (please see Important Notes on Page 2 for more information). Number of critical care admissions should not be compared to number of ICU admissions from previous weeks.

c. Pre-transition (case line list) deaths include COVID-19 related deaths reported by Health Authorities up to April 1, 2022. As of April 2, 2022, post-transition (automated linkage) deaths are any COVID-19 lab positive cases who died from any cause recorded in Vital Statistics within 30 days of their first positive lab result date. Deaths reported after the system transition use a broader definition and will overestimate the true number of deaths due to COVID-19 since death registration is recorded before the underlying cause of death is determined. Due to the change in data source for death data, the number of pre-transition deaths should not be compared to the number of post-transition deaths.

d. Since underlying cause of death (UCD) takes approximately 8 weeks to be recorded, all-cause mortality is initially reported and then retrospective evaluations of underlying cause of death are provided here to better understand true COVID-19 mortality. UCD as COVID-19 are deaths that have been determined to be caused by COVID-19 in their Vital Stats record. UCD as non-COVID-19 are deaths that have been determined to be not attributable to COVID-19 in their Vital Stats record that are reported as deaths due to a lab positive COVID-19 test within 30 days of death. UCD pending are all post-transition deaths that do not yet have a recorded UCD.
Figure 6. Weekly COVID-19 hospital admissions (A), critical care admissions (B), and deaths (C) by age groups, BC, Jan 3, 2021 (week 1) – Aug 06, 2022 (week 31)\(^a\)

\(\text{Expected to show greatest increase by epidemiological week as data become more complete}\)

a. Among those with available age information only.

Figure 7 displays the number of pre-transition deaths and post-transition deaths (i.e. people who test positive for COVID-19 and died from any cause within 30 days of their first positive lab result date) by underlying cause of death as recorded in Vital Statistics from week 12 to week 31 in 2022. From week 14 to week 24 where the UCD has been reported for at least 95% of the post-transition deaths, an average of 43% of these deaths were reported to have COVID-19 as their UCD. Post-transition deaths with complete UCD are expected to increase over time.

Figure 7. Pre- and post-transition deaths by underlying cause of death, BC, Mar 20, 2022 (week 12) – Aug 06, 2022 (week 31)\(^a, b\)

\(\text{Dot line represents system transition date}\)

\(\text{Expected to show greatest increase by epidemiological week as data become more complete}\)

a. Pre-transition (case line list) deaths include COVID-19 related deaths reported by Health Authorities up to April 1, 2022. As of April 2, 2022, post-transition (automated linkage) deaths are any COVID-19 lab positive cases who died from any cause recorded in Vital Statistics within 30 days of their first positive lab result date. Deaths reported after the system transition use a broader definition and will overestimate the true number of deaths due to COVID-19 since death registration is recorded before the underlying cause of death is determined. Due to the change in data source for death data, the number of pre-transition deaths should not be compared to the number of post-transition deaths.

b. Since underlying cause of death (UCD) takes approximately 8 weeks to be recorded, all-cause mortality is initially reported and then retrospective evaluations of underlying cause of death are provided here to better understand true COVID-19 mortality. UCD as COVID-19 are deaths that have been determined to be caused by COVID-19 in their Vital Stats record. UCD as non-COVID-19 are deaths that have been determined to be not attributable to COVID-19 in their Vital Stats record that are reported as deaths due to a lab positive COVID-19 test within 30 days of death. UCD pending are all post-transition deaths that do not yet have a recorded UCD.
F. Care facility outbreaks

As shown in Table 4 and Figure 8, 698 care facility (acute care and long-term care settings) outbreaks were reported in total in BC to the end of week 31. In week 31, based on earliest symptom onset date (if unavailable, then outbreak declared date is used), 5 new care facility outbreaks (in long-term care) were declared. In the past four weeks (from week 28 to week 31), there has been a weekly average of 3 care facility outbreaks.

Table 4. COVID-19 care facility outbreaks by earliest case onset, associated cases and deaths by episode date, BC Jan 15, 2020 (week 3) – Aug 06, 2022 (week 31) (N=698)

<table>
<thead>
<tr>
<th>Care facility outbreaks and cases by episode date</th>
<th>Outbreaks</th>
<th>Cases</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Residents</td>
<td>Staff/other</td>
<td>Total</td>
</tr>
<tr>
<td>Week 31, Care Facility Outbreaks</td>
<td>5</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>Cumulative, Care Facility Outbreaks</td>
<td>698</td>
<td>9,880</td>
<td>3,817</td>
</tr>
</tbody>
</table>

Figure 8. COVID-19 care facility outbreaks by earliest case onset, facility type (A) and Health Authority (B), BC Jan 3, 2021 (week 1) – Aug 06, 2022 (week 31) (N=447)

- Case and death counts include PCR positive cases only for outbreaks in NHA and VIHA. Vancouver Coastal Health, Fraser Health Authority, and Interior Health Authority outbreaks may also include those diagnosed by rapid antigen tests or considered as suspect reinfection.
- Earliest dates of onset of outbreak cases are subject to change as investigations and data are updated. If unavailable, outbreak declared date is used.
- New outbreaks reported since the last report with an earliest case onset date (if unavailable, outbreak declared date is used) prior to the current reporting week will be included in the cumulative care facility outbreak total.
- Cases with unknown role are included in the case count for Staff/other.
- Data might be incomplete or vary from what was reported previously due to updates by Health Authorities.
G. Wastewater surveillance

The BCCDC and Metro Vancouver measure SARS-CoV-2 in wastewater at five wastewater treatment plants (treating wastewater from 50% of BC’s population). To account for changing wastewater volume due to rainfall or snowmelt, SARS-CoV-2 concentrations are normalized to wastewater flow. Normalized SARS-CoV-2 wastewater levels (measured as viral copies per day) are shown alongside incident COVID-19 cases in each wastewater catchment area in Figure 9 and Figure 10. The BCCDC’s test results are obtained from the liquid fraction of the wastewater sample. Other organizations, such as the National Microbiology Laboratory, test from the solid fraction of wastewater and therefore, their results are not directly comparable.

Key messages with results through to August 13, 2022:

Though there continues to be week-to-week variability, SARS-CoV-2 viral loads generally continue to decrease from their most recent peak in late-June or early-July in Metro Vancouver wastewater.

The increases noted that last week’s increase at Lions Gate WWTP (North Shore) has not been sustained.

- Over the two weeks, viral loads at Annacis Island WWTP (Fraser North and South) have decreased by 37%.
- Over the two weeks, viral loads at Northwest Langley WWTP (Northwest Langley) have decreased by 30%.
- Over the two weeks, viral loads at Iona Island WWTP (Vancouver) have decreased by 42%.
- Over the past five weeks, viral loads at Lulu Island WWTP (Richmond) have decreased by 49%.
- Over the past week, viral loads at Lions Gate WWTP (North Shore) have decreased by 46%.

Figure 9. Wastewater surveillance, FH
H. Additional resources

Variant of concern (VOC) findings are available weekly here: http://www.bccdc.ca/health-info/diseases-conditions/covid-19/data#variants

For local, national, and global comparisons of BC to other jurisdictions on key epidemiological metrics, visit the BCCDC COVID-19 Epidemiology App here: https://bccdc.shinyapps.io/covid19_global_epi_app/

BC’s COVID-19 Immunization Plan is updated regularly here: https://www2.gov.bc.ca/gov/content/covid-19/vaccine/plan